Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Visualization version   GIF version

Theorem rlimsqzlem 14227
 Description: Lemma for rlimsqz 14228 and rlimsqz2 14229. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m (𝜑𝑀 ∈ ℝ)
rlimsqzlem.e (𝜑𝐸 ∈ ℂ)
rlimsqzlem.1 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqzlem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimsqzlem.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimsqzlem.4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
Assertion
Ref Expression
rlimsqzlem (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqzlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
2 rlimsqzlem.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
32ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀 ∈ ℝ)
42ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
5 elicopnf 12140 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
64, 5syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
76simprbda 651 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑧 ∈ ℝ)
87adantrr 749 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
9 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
119, 10dmmptd 5937 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 rlimss 14081 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstr3d 3603 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
1514adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
1615sselda 3568 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
186simplbda 652 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑀𝑧)
1918adantrr 749 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑧)
20 simprr 792 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧𝑥)
213, 8, 17, 19, 20letrd 10073 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑥)
22 rlimsqzlem.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2322anassrs 678 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2423adantllr 751 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2521, 24syldan 486 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
26 rlimsqzlem.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
27 rlimsqzlem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐸 ∈ ℂ)
2926, 28subcld 10271 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶𝐸) ∈ ℂ)
3029abscld 14023 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3130adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3231adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ∈ ℝ)
33 rlimcl 14082 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐷 ∈ ℂ)
3610, 35subcld 10271 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐵𝐷) ∈ ℂ)
3736abscld 14023 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3837adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3938adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐵𝐷)) ∈ ℝ)
40 rpre 11715 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4140ad3antlr 763 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑦 ∈ ℝ)
42 lelttr 10007 . . . . . . . . . . 11 (((abs‘(𝐶𝐸)) ∈ ℝ ∧ (abs‘(𝐵𝐷)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4332, 39, 41, 42syl3anc 1318 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4425, 43mpand 707 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦))
4544expr 641 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4645an32s 842 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4746a2d 29 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4847ralimdva 2945 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4948reximdva 3000 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5049ralimdva 2945 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5110ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
5251, 14, 34, 2rlim3 14077 . . 3 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦)))
5326ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
5453, 14, 27, 2rlim3 14077 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5550, 52, 543imtr4d 282 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐸))
561, 55mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  +∞cpnf 9950   < clt 9953   ≤ cle 9954   − cmin 10145  ℝ+crp 11708  [,)cico 12048  abscabs 13822   ⇝𝑟 crli 14064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068 This theorem is referenced by:  rlimsqz  14228  rlimsqz2  14229  cxploglim2  24505  logfacrlim  24749  logexprlim  24750
 Copyright terms: Public domain W3C validator