MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicopnf Structured version   Visualization version   GIF version

Theorem elicopnf 12140
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
elicopnf (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))

Proof of Theorem elicopnf
StepHypRef Expression
1 pnfxr 9971 . . 3 +∞ ∈ ℝ*
2 elico2 12108 . . 3 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
31, 2mpan2 703 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
4 ltpnf 11830 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
54adantr 480 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 < +∞)
65pm4.71i 662 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
7 df-3an 1033 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
86, 7bitr4i 266 . 2 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞))
93, 8syl6bbr 277 1 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,)cico 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ico 12052
This theorem is referenced by:  elrege0  12149  rexico  13941  limsupgle  14056  limsupgre  14060  rlim3  14077  ello12  14095  lo1bdd2  14103  elo12  14106  lo1resb  14143  rlimresb  14144  o1resb  14145  lo1eq  14147  rlimeq  14148  rlimsqzlem  14227  o1fsum  14386  ovolicopnf  23099  dvfsumrlimge0  23597  dvfsumrlim  23598  dvfsumrlim2  23599  cxp2lim  24503  chebbnd1  24961  chtppilimlem1  24962  chtppilimlem2  24963  chtppilim  24964  chebbnd2  24966  chto1lb  24967  chpchtlim  24968  chpo1ub  24969  vmadivsumb  24972  dchrisumlema  24977  dchrisumlem2  24979  dchrisumlem3  24980  dchrmusumlema  24982  dchrmusum2  24983  dchrvmasumlem2  24987  dchrvmasumiflem1  24990  dchrisum0lema  25003  dchrisum0lem1b  25004  dchrisum0lem2a  25006  dchrisum0lem2  25007  2vmadivsumlem  25029  selbergb  25038  selberg2b  25041  chpdifbndlem1  25042  selberg3lem1  25046  selberg3lem2  25047  selberg4lem1  25049  pntrsumo1  25054  selbergsb  25064  pntrlog2bndlem3  25068  pntpbnd1  25075  pntpbnd2  25076  pntibndlem3  25081  pntlemn  25089  pntlem3  25098  pntleml  25100  pnt2  25102  itg2addnclem2  32632  elbigo2  42144  rege1logbrege0  42150  blennnelnn  42168  dignnld  42195
  Copyright terms: Public domain W3C validator