MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcl Structured version   Visualization version   GIF version

Theorem rlimcl 14082
Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
rlimcl (𝐹𝑟 𝐴𝐴 ∈ ℂ)

Proof of Theorem rlimcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 14080 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
2 rlimss 14081 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
3 eqidd 2611 . . . 4 ((𝐹𝑟 𝐴𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
41, 2, 3rlim 14074 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐴)) < 𝑦))))
54ibi 255 . 2 (𝐹𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐴)) < 𝑦)))
65simpld 474 1 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822  𝑟 crli 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-rlim 14068
This theorem is referenced by:  rlimi  14092  rlimclim1  14124  rlimuni  14129  rlimresb  14144  rlimcld2  14157  rlimabs  14187  rlimcj  14188  rlimre  14189  rlimim  14190  rlimo1  14195  rlimadd  14221  rlimsub  14222  rlimmul  14223  rlimdiv  14224  rlimsqzlem  14227  fsumrlim  14384  dchrisum0lem2a  25006  mulog2sumlem2  25024  mulog2sumlem3  25025
  Copyright terms: Public domain W3C validator