MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   GIF version

Theorem dchrisum0lem2a 25006
Description: Lemma for dchrisum0 25009. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
Assertion
Ref Expression
dchrisum0lem2a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12634 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 simpl 472 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝜑)
3 elfznn 12241 . . . . 5 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
4 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
9 ssrab2 3650 . . . . . . . . . . 11 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
108, 9eqsstri 3598 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
11 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
1210, 11sseldi 3566 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1312eldifad 3552 . . . . . . . 8 (𝜑𝑋𝐷)
1413adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
15 nnz 11276 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1615adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
174, 5, 6, 7, 14, 16dchrzrhcl 24770 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
18 nnrp 11718 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
1918adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
2019rpsqrtcld 13998 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
2120rpcnd 11750 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
2220rpne0d 11753 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
2317, 21, 22divcld 10680 . . . . 5 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
242, 3, 23syl2an 493 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
251, 24fsumcl 14311 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
26 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
27 rlimcl 14082 . . . . 5 (𝐻𝑟 𝑈𝑈 ∈ ℂ)
2826, 27syl 17 . . . 4 (𝜑𝑈 ∈ ℂ)
2928adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑈 ∈ ℂ)
30 0xr 9965 . . . . . . . . 9 0 ∈ ℝ*
31 0lt1 10429 . . . . . . . . 9 0 < 1
32 df-ioo 12050 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
33 df-ico 12052 . . . . . . . . . 10 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
34 xrltletr 11864 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
3532, 33, 34ixxss1 12064 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
3630, 31, 35mp2an 704 . . . . . . . 8 (1[,)+∞) ⊆ (0(,)+∞)
37 ioorp 12122 . . . . . . . 8 (0(,)+∞) = ℝ+
3836, 37sseqtri 3600 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
39 resmpt 5369 . . . . . . 7 ((1[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
4038, 39ax-mp 5 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
4138sseli 3564 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
423adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
43 fveq2 6103 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
4443fveq2d 6107 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
45 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
4644, 45oveq12d 6567 . . . . . . . . . . 11 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
47 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
48 ovex 6577 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
4946, 47, 48fvmpt3i 6196 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5042, 49syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5141, 50sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
52 1re 9918 . . . . . . . . . . . 12 1 ∈ ℝ
53 elicopnf 12140 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
5452, 53ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
55 flge1nn 12484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
5654, 55sylbi 206 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ)
5756adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ ℕ)
58 nnuz 11599 . . . . . . . . 9 ℕ = (ℤ‘1)
5957, 58syl6eleq 2698 . . . . . . . 8 ((𝜑𝑥 ∈ (1[,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘1))
6041, 24sylanl2 681 . . . . . . . 8 (((𝜑𝑥 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
6151, 59, 60fsumser 14308 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6261mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
6340, 62syl5eq 2656 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))))
64 fveq2 6103 . . . . . . 7 (𝑚 = (⌊‘𝑥) → (seq1( + , 𝐹)‘𝑚) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
65 rpssre 11719 . . . . . . . . 9 + ⊆ ℝ
6665a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
6738, 66syl5ss 3579 . . . . . . 7 (𝜑 → (1[,)+∞) ⊆ ℝ)
68 1zzd 11285 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
6946cbvmptv 4678 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
7047, 69eqtri 2632 . . . . . . . . . . . 12 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
7123, 70fmptd 6292 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℂ)
7271ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
7358, 68, 72serf 12691 . . . . . . . . 9 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
7473feqmptd 6159 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) = (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)))
75 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
7674, 75eqbrtrrd 4607 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑚)) ⇝ 𝑆)
7773ffvelrnda 6267 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (seq1( + , 𝐹)‘𝑚) ∈ ℂ)
7854simprbi 479 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7978adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8058, 64, 67, 68, 76, 77, 79climrlim2 14126 . . . . . 6 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆)
81 rlimo1 14195 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ⇝𝑟 𝑆 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8280, 81syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (1[,)+∞) ↦ (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ 𝑂(1))
8363, 82eqeltrd 2688 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1))
84 eqid 2610 . . . . . 6 (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
8525, 84fmptd 6292 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))):ℝ+⟶ℂ)
86 1red 9934 . . . . 5 (𝜑 → 1 ∈ ℝ)
8785, 66, 86o1resb 14145 . . . 4 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
8883, 87mpbird 246 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ 𝑂(1))
89 o1const 14198 . . . 4 ((ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ) → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
9065, 28, 89sylancr 694 . . 3 (𝜑 → (𝑥 ∈ ℝ+𝑈) ∈ 𝑂(1))
9125, 29, 88, 90o1mul2 14203 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1))
92 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
93 2z 11286 . . . . . . . . 9 2 ∈ ℤ
94 rpexpcl 12741 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
9592, 93, 94sylancl 693 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
963nnrpd 11746 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
97 rpdivcl 11732 . . . . . . . 8 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
9895, 96, 97syl2an 493 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
99 dchrisum0lem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
10099divsqrsumf 24507 . . . . . . . 8 𝐻:ℝ+⟶ℝ
101100ffvelrni 6266 . . . . . . 7 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
10298, 101syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℝ)
103102recnd 9947 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) ∈ ℂ)
10424, 103mulcld 9939 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
1051, 104fsumcl 14311 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) ∈ ℂ)
10625, 29mulcld 9939 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
10726ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝐻𝑟 𝑈)
108107, 27syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑈 ∈ ℂ)
10924, 108mulcld 9939 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) ∈ ℂ)
1101, 104, 109fsumsub 14362 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
11124, 103, 108subdid 10365 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
112111sumeq2dv 14281 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
1131, 29, 24fsummulc1 14359 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))
114113oveq2d 6565 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
115110, 112, 1143eqtr4d 2654 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)))
116115mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))))
117103, 108subcld 10271 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈) ∈ ℂ)
11824, 117mulcld 9939 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
1191, 118fsumcl 14311 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℂ)
120119abscld 14023 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
121118abscld 14023 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
1221, 121fsumrecl 14312 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ ℝ)
123 1red 9934 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℝ)
1241, 118fsumabs 14374 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
125 rprege0 11723 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
126125adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
127126simpld 474 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
128 reflcl 12459 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
129127, 128syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
130129, 92rerpdivcld 11779 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
131 simplr 788 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
132131rprecred 11759 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
13324abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
13496rpsqrtcld 13998 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘𝑥)) → (√‘𝑚) ∈ ℝ+)
135134adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
136135rprecred 11759 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℝ)
137117abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ∈ ℝ)
138135, 131rpdivcld 11765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ+)
13965, 138sseldi 3566 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℝ)
14024absge0d 14031 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
141117absge0d 14031 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)))
1422, 3, 17syl2an 493 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
143135rpcnd 11750 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
144135rpne0d 11753 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
145142, 143, 144absdivd 14042 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))))
146135rprege0d 11755 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)))
147 absid 13884 . . . . . . . . . . . . . . . 16 (((√‘𝑚) ∈ ℝ ∧ 0 ≤ (√‘𝑚)) → (abs‘(√‘𝑚)) = (√‘𝑚))
148146, 147syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑚)) = (√‘𝑚))
149148oveq2d 6565 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (abs‘(√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
150145, 149eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)))
151142abscld 14023 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ∈ ℝ)
152 1red 9934 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
153 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘𝑍) = (Base‘𝑍)
15413ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
155 rpvmasum.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
156155nnnn0d 11228 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
1575, 153, 7znzrhfo 19715 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
158 fof 6028 . . . . . . . . . . . . . . . . . 18 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
159156, 157, 1583syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:ℤ⟶(Base‘𝑍))
160159adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
161 elfzelz 12213 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
162 ffvelrn 6265 . . . . . . . . . . . . . . . 16 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
163160, 161, 162syl2an 493 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐿𝑚) ∈ (Base‘𝑍))
1644, 6, 5, 153, 154, 163dchrabs2 24787 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑚))) ≤ 1)
165151, 152, 135, 164lediv1dd 11806 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑚))) / (√‘𝑚)) ≤ (1 / (√‘𝑚)))
166150, 165eqbrtrd 4605 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ (1 / (√‘𝑚)))
16799, 107divsqrtsum2 24509 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ ((𝑥↑2) / 𝑚) ∈ ℝ+) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16898, 167mpdan 699 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ (1 / (√‘((𝑥↑2) / 𝑚))))
16995rprege0d 11755 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
170 sqrtdiv 13854 . . . . . . . . . . . . . . . . 17 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
171169, 96, 170syl2an 493 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
172125ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
173 sqrtsq 13858 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
174172, 173syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
175174oveq1d 6564 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
176171, 175eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
177176oveq2d 6565 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = (1 / (𝑥 / (√‘𝑚))))
178 rpcnne0 11726 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
179178ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
180135rpcnne0d 11757 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
181 recdiv 10610 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
182179, 180, 181syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / (√‘𝑚))) = ((√‘𝑚) / 𝑥))
183177, 182eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘((𝑥↑2) / 𝑚))) = ((√‘𝑚) / 𝑥))
184168, 183breqtrd 4609 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈)) ≤ ((√‘𝑚) / 𝑥))
185133, 136, 137, 139, 140, 141, 166, 184lemul12ad 10845 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
18624, 117absmuld 14041 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) = ((abs‘((𝑋‘(𝐿𝑚)) / (√‘𝑚))) · (abs‘((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))))
187 1cnd 9935 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
188 dmdcan 10614 . . . . . . . . . . . . 13 ((((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
189180, 179, 187, 188syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = (1 / 𝑥))
190138rpcnd 11750 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) / 𝑥) ∈ ℂ)
191 reccl 10571 . . . . . . . . . . . . . 14 (((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) → (1 / (√‘𝑚)) ∈ ℂ)
192180, 191syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑚)) ∈ ℂ)
193190, 192mulcomd 9940 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((√‘𝑚) / 𝑥) · (1 / (√‘𝑚))) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
194189, 193eqtr3d 2646 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / (√‘𝑚)) · ((√‘𝑚) / 𝑥)))
195185, 186, 1943brtr4d 4615 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ (1 / 𝑥))
1961, 121, 132, 195fsumle 14372 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
197 flge0nn0 12483 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
198 hashfz1 12996 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
199126, 197, 1983syl 18 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
200199oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
20192rpreccld 11758 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
202201rpcnd 11750 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
203 fsumconst 14364 . . . . . . . . . . 11 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
2041, 202, 203syl2anc 691 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
205129recnd 9947 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℂ)
206178adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
207206simpld 474 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
208206simprd 478 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
209205, 207, 208divrecd 10683 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
210200, 204, 2093eqtr4d 2654 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
211196, 210breqtrd 4609 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ ((⌊‘𝑥) / 𝑥))
212 flle 12462 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
213127, 212syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
214127recnd 9947 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
215214mulid1d 9936 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
216213, 215breqtrrd 4611 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ (𝑥 · 1))
217 rpregt0 11722 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
218217adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
219 ledivmul 10778 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
220129, 123, 218, 219syl3anc 1318 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
221216, 220mpbird 246 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ≤ 1)
222122, 130, 123, 211, 221letrd 10073 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
223120, 122, 123, 124, 222letrd 10073 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
224223adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ≤ 1)
22566, 119, 86, 86, 224elo1d 14115 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((𝐻‘((𝑥↑2) / 𝑚)) − 𝑈))) ∈ 𝑂(1))
226116, 225eqeltrrd 2689 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) − (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈))) ∈ 𝑂(1))
227105, 106, 226o1dif 14208 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · 𝑈)) ∈ 𝑂(1)))
22891, 227mpbird 246 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,)cioo 12046  [,)cico 12048  ...cfz 12197  cfl 12453  seqcseq 12663  cexp 12722  #chash 12979  csqrt 13821  abscabs 13822  cli 14063  𝑟 crli 14064  𝑂(1)co1 14065  Σcsu 14264  Basecbs 15695  0gc0g 15923  ℤRHomczrh 19667  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cntz 17573  df-od 17771  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-dchr 24758
This theorem is referenced by:  dchrisum0lem2  25007
  Copyright terms: Public domain W3C validator