Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1dif | Structured version Visualization version GIF version |
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1dif.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
o1dif.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
o1dif.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) |
Ref | Expression |
---|---|
o1dif | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dif.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | |
2 | o1sub 14194 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1)) | |
3 | 2 | expcom 450 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
5 | o1dif.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | o1dif.2 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
7 | 5, 6 | subcld 10271 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) ∈ ℂ) |
8 | 7 | ralrimiva 2949 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ) |
9 | dmmptg 5549 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) |
11 | o1dm 14109 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) | |
12 | 1, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) |
13 | 10, 12 | eqsstr3d 3603 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
14 | reex 9906 | . . . . . . . 8 ⊢ ℝ ∈ V | |
15 | 14 | ssex 4730 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqidd 2611 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | eqidd 2611 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) | |
19 | 16, 5, 7, 17, 18 | offval2 6812 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶)))) |
20 | 5, 6 | nncand 10276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − (𝐵 − 𝐶)) = 𝐶) |
21 | 20 | mpteq2dva 4672 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
22 | 19, 21 | eqtrd 2644 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
23 | 22 | eleq1d 2672 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∘𝑓 − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
24 | 4, 23 | sylibd 228 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
25 | o1add 14192 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
26 | 25 | ex 449 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
27 | 1, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
28 | eqidd 2611 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
29 | 16, 7, 6, 18, 28 | offval2 6812 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶))) |
30 | 5, 6 | npcand 10275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
31 | 30 | mpteq2dva 4672 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
32 | 29, 31 | eqtrd 2644 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
33 | 32 | eleq1d 2672 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘𝑓 + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
34 | 27, 33 | sylibd 228 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
35 | 24, 34 | impbid 201 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ⊆ wss 3540 ↦ cmpt 4643 dom cdm 5038 (class class class)co 6549 ∘𝑓 cof 6793 ℂcc 9813 ℝcr 9814 + caddc 9818 − cmin 10145 𝑂(1)co1 14065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ico 12052 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-o1 14069 |
This theorem is referenced by: dchrmusum2 24983 dchrvmasumiflem2 24991 dchrisum0lem2a 25006 dchrisum0lem2 25007 rplogsum 25016 dirith2 25017 mulogsumlem 25020 mulogsum 25021 vmalogdivsum2 25027 vmalogdivsum 25028 2vmadivsumlem 25029 selberg3lem1 25046 selberg4lem1 25049 selberg4 25050 pntrlog2bndlem4 25069 |
Copyright terms: Public domain | W3C validator |