MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dif Structured version   Visualization version   GIF version

Theorem o1dif 14208
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1dif.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1dif.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
o1dif.3 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Assertion
Ref Expression
o1dif (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem o1dif
StepHypRef Expression
1 o1dif.3 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
2 o1sub 14194 . . . . 5 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1))
32expcom 450 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
41, 3syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
5 o1dif.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 o1dif.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
75, 6subcld 10271 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
87ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 (𝐵𝐶) ∈ ℂ)
9 dmmptg 5549 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) ∈ ℂ → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
108, 9syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
11 o1dm 14109 . . . . . . . . 9 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
121, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
1310, 12eqsstr3d 3603 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
14 reex 9906 . . . . . . . 8 ℝ ∈ V
1514ssex 4730 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1613, 15syl 17 . . . . . 6 (𝜑𝐴 ∈ V)
17 eqidd 2611 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
18 eqidd 2611 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
1916, 5, 7, 17, 18offval2 6812 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))))
205, 6nncand 10276 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 − (𝐵𝐶)) = 𝐶)
2120mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))) = (𝑥𝐴𝐶))
2219, 21eqtrd 2644 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴𝐶))
2322eleq1d 2672 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∘𝑓 − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
244, 23sylibd 228 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐶) ∈ 𝑂(1)))
25 o1add 14192 . . . . 5 (((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) ∈ 𝑂(1))
2625ex 449 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
271, 26syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
28 eqidd 2611 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2916, 7, 6, 18, 28offval2 6812 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)))
305, 6npcand 10275 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵𝐶) + 𝐶) = 𝐵)
3130mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)) = (𝑥𝐴𝐵))
3229, 31eqtrd 2644 . . . 4 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) = (𝑥𝐴𝐵))
3332eleq1d 2672 . . 3 (𝜑 → (((𝑥𝐴 ↦ (𝐵𝐶)) ∘𝑓 + (𝑥𝐴𝐶)) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ 𝑂(1)))
3427, 33sylibd 228 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝐵) ∈ 𝑂(1)))
3524, 34impbid 201 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  cmpt 4643  dom cdm 5038  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814   + caddc 9818  cmin 10145  𝑂(1)co1 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-o1 14069
This theorem is referenced by:  dchrmusum2  24983  dchrvmasumiflem2  24991  dchrisum0lem2a  25006  dchrisum0lem2  25007  rplogsum  25016  dirith2  25017  mulogsumlem  25020  mulogsum  25021  vmalogdivsum2  25027  vmalogdivsum  25028  2vmadivsumlem  25029  selberg3lem1  25046  selberg4lem1  25049  selberg4  25050  pntrlog2bndlem4  25069
  Copyright terms: Public domain W3C validator