MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Visualization version   GIF version

Theorem dchrisum0lem2 25007
Description: Lemma for dchrisum0 25009. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
dchrisum0lem2.k 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisum0lem2.e (𝜑𝐸 ∈ (0[,)+∞))
dchrisum0lem2.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrisum0lem2.3 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
Assertion
Ref Expression
dchrisum0lem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝐸,𝑑,𝑚,𝑥,𝑦   𝑚,𝐾,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥,𝑦   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐸(𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cnd 10970 . . 3 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
2 rpcn 11717 . . . . 5 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 fzfid 12634 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
5 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
6 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
8 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
9 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
10 ssrab2 3650 . . . . . . . . . . 11 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
119, 10eqsstri 3598 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
12 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
1311, 12sseldi 3566 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1413eldifad 3552 . . . . . . . 8 (𝜑𝑋𝐷)
1514ad2antrr 758 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
16 elfzelz 12213 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
1716adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℤ)
185, 6, 7, 8, 15, 17dchrzrhcl 24770 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
19 elfznn 12241 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
2019nnrpd 11746 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
2120adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2221rpcnd 11750 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℂ)
2321rpne0d 11753 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ≠ 0)
2418, 22, 23divcld 10680 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
254, 24fsumcl 14311 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
263, 25mulcld 9939 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
27 rpssre 11719 . . . . 5 + ⊆ ℝ
28 2cn 10968 . . . . 5 2 ∈ ℂ
29 o1const 14198 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3027, 28, 29mp2an 704 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
3130a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3227a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 1red 9934 . . . 4 (𝜑 → 1 ∈ ℝ)
34 dchrisum0lem2.e . . . . 5 (𝜑𝐸 ∈ (0[,)+∞))
35 elrege0 12149 . . . . . 6 (𝐸 ∈ (0[,)+∞) ↔ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
3635simplbi 475 . . . . 5 (𝐸 ∈ (0[,)+∞) → 𝐸 ∈ ℝ)
3734, 36syl 17 . . . 4 (𝜑𝐸 ∈ ℝ)
383, 25absmuld 14041 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
39 rprege0 11723 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4039adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
41 absid 13884 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
4240, 41syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘𝑥) = 𝑥)
4342oveq1d 6564 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4438, 43eqtrd 2644 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4544adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4625adantrr 749 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
4746subid1d 10260 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))
4819adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
49 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
5049fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
51 id 22 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚𝑎 = 𝑚)
5250, 51oveq12d 6567 . . . . . . . . . . . . . 14 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
53 dchrisum0lem2.k . . . . . . . . . . . . . 14 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 ovex 6577 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑎)) / 𝑎) ∈ V
5552, 53, 54fvmpt3i 6196 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5648, 55syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5756adantlrr 753 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
58 rpregt0 11722 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5958ad2antrl 760 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6059simpld 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
61 simprr 792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
62 flge1nn 12484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
6360, 61, 62syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
64 nnuz 11599 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6563, 64syl6eleq 2698 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
6624adantlrr 753 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
6757, 65, 66fsumser 14308 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
68 rpvmasum.a . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
69 rpvmasum2.1 . . . . . . . . . . . . . 14 1 = (0g𝐺)
70 eldifsni 4261 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
7113, 70syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋1 )
72 dchrisum0lem2.t . . . . . . . . . . . . . 14 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
73 dchrisum0lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
746, 8, 68, 5, 7, 69, 14, 71, 53, 34, 72, 73, 9dchrvmaeq0 24993 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑊𝑇 = 0))
7512, 74mpbid 221 . . . . . . . . . . . 12 (𝜑𝑇 = 0)
7675adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 = 0)
7776eqcomd 2616 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 = 𝑇)
7867, 77oveq12d 6567 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7947, 78eqtr3d 2646 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
8079fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
81 1re 9918 . . . . . . . . . 10 1 ∈ ℝ
82 elicopnf 12140 . . . . . . . . . 10 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8460, 61, 83sylanbrc 695 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ (1[,)+∞))
8573adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
86 fveq2 6103 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (⌊‘𝑦) = (⌊‘𝑥))
8786fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
8887oveq1d 6564 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
8988fveq2d 6107 . . . . . . . . . 10 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
90 oveq2 6557 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐸 / 𝑦) = (𝐸 / 𝑥))
9189, 90breq12d 4596 . . . . . . . . 9 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
9291rspcv 3278 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
9384, 85, 92sylc 63 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥))
9480, 93eqbrtrd 4605 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))
9546abscld 14023 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ)
9637adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐸 ∈ ℝ)
97 lemuldiv2 10783 . . . . . . 7 (((abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9895, 96, 59, 97syl3anc 1318 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9994, 98mpbird 246 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
10045, 99eqbrtrd 4605 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
10132, 26, 33, 37, 100elo1d 14115 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ 𝑂(1))
1021, 26, 31, 101o1mul2 14203 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1))
103 fzfid 12634 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
10421rpsqrtcld 13998 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
105104rpcnd 11750 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
106104rpne0d 11753 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
10718, 105, 106divcld 10680 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
108107adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
109 elfznn 12241 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
110109adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
111110nnrpd 11746 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
112111rpsqrtcld 13998 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
113112rpcnd 11750 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℂ)
114112rpne0d 11753 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ≠ 0)
115108, 113, 114divcld 10680 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
116103, 115fsumcl 14311 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1174, 116fsumcl 14311 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
118 mulcl 9899 . . . 4 ((2 ∈ ℂ ∧ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
11928, 26, 118sylancr 694 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
120 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
121 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
122 2z 11286 . . . . . . . . . . . . . 14 2 ∈ ℤ
123 rpexpcl 12741 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
124121, 122, 123sylancl 693 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
125 rpdivcl 11732 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
126124, 20, 125syl2an 493 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
127126rpsqrtcld 13998 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ+)
128127rpred 11748 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ)
129 remulcl 9900 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
130120, 128, 129sylancr 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
131130recnd 9947 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℂ)
132107, 131mulcld 9939 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) ∈ ℂ)
1334, 116, 132fsumsub 14362 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
134112rpcnne0d 11757 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
135 reccl 10571 . . . . . . . . . . 11 (((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0) → (1 / (√‘𝑑)) ∈ ℂ)
136134, 135syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (1 / (√‘𝑑)) ∈ ℂ)
137103, 136fsumcl 14311 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) ∈ ℂ)
138107, 137, 131subdid 10365 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
139 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = ((𝑥↑2) / 𝑚) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑚)))
140139oveq2d 6565 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (1...(⌊‘𝑦)) = (1...(⌊‘((𝑥↑2) / 𝑚))))
141140sumeq1d 14279 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)))
142 fveq2 6103 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑚)))
143142oveq2d 6565 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → (2 · (√‘𝑦)) = (2 · (√‘((𝑥↑2) / 𝑚))))
144141, 143oveq12d 6567 . . . . . . . . . . 11 (𝑦 = ((𝑥↑2) / 𝑚) → (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
145 dchrisum0lem2.h . . . . . . . . . . 11 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
146 ovex 6577 . . . . . . . . . . 11 𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) ∈ V
147144, 145, 146fvmpt3i 6196 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
148126, 147syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
149148oveq2d 6565 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))))
150108, 113, 114divrecd 10683 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
151150sumeq2dv 14281 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
152103, 107, 136fsummulc2 14358 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
153151, 152eqtr4d 2647 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))))
154153oveq1d 6564 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
155138, 149, 1543eqtr4d 2654 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
156155sumeq2dv 14281 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
157 mulcl 9899 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
15828, 3, 157sylancr 694 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝑥) ∈ ℂ)
1594, 158, 24fsummulc2 14358 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
1601, 3, 25mulassd 9942 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
161158adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · 𝑥) ∈ ℂ)
162161, 107, 105, 106div12d 10716 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
163104rpcnne0d 11757 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
164 divdiv1 10615 . . . . . . . . . . . . 13 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16518, 163, 163, 164syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16621rprege0d 11755 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
167 remsqsqrt 13845 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
168166, 167syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
169168oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170165, 169eqtr2d 2645 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)))
171170oveq2d 6565 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))))
172124adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
173172rprege0d 11755 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
174 sqrtdiv 13854 . . . . . . . . . . . . . . 15 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
175173, 21, 174syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
17639ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
177 sqrtsq 13858 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
178176, 177syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
179178oveq1d 6564 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
180175, 179eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
181180oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = (2 · (𝑥 / (√‘𝑚))))
182 2cnd 10970 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1833adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
184 divass 10582 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
185182, 183, 163, 184syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
186181, 185eqtr4d 2647 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = ((2 · 𝑥) / (√‘𝑚)))
187186oveq2d 6565 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
188162, 171, 1873eqtr4d 2654 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
189188sumeq2dv 14281 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
190159, 160, 1893eqtr3d 2652 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
191190oveq2d 6565 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
192133, 156, 1913eqtr4d 2654 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))))
193192mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))))
194 dchrisum0lem1.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
195 dchrisum0.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
196 dchrisum0.s . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
197 dchrisum0.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
198 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
1996, 8, 68, 5, 7, 69, 9, 12, 194, 195, 196, 197, 145, 198dchrisum0lem2a 25006 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
200193, 199eqeltrrd 2689 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))) ∈ 𝑂(1))
201117, 119, 200o1dif 14208 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1)))
202102, 201mpbird 246 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cuz 11563  +crp 11708  [,)cico 12048  ...cfz 12197  cfl 12453  seqcseq 12663  cexp 12722  csqrt 13821  abscabs 13822  cli 14063  𝑟 crli 14064  𝑂(1)co1 14065  Σcsu 14264  Basecbs 15695  0gc0g 15923  ℤRHomczrh 19667  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cntz 17573  df-od 17771  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-dchr 24758
This theorem is referenced by:  dchrisum0lem3  25008
  Copyright terms: Public domain W3C validator