MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Unicode version

Theorem dchrisum0lem2 22726
Description: Lemma for dchrisum0 22728. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
dchrisum0lem2.k  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisum0lem2.e  |-  ( ph  ->  E  e.  ( 0 [,) +oo ) )
dchrisum0lem2.t  |-  ( ph  ->  seq 1 (  +  ,  K )  ~~>  T )
dchrisum0lem2.3  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y ) )
Assertion
Ref Expression
dchrisum0lem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    E, d, m, x, y    m, K, y   
m, N, x, y    ph, d, m, x    T, d, m, x, y    S, d, m, x, y    U, m, x    x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    T( a)    U( y, a, d)    .1. ( a,
d)    E( a)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    K( x, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cnd 10390 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
2 rpcn 10995 . . . . 5  |-  ( x  e.  RR+  ->  x  e.  CC )
32adantl 463 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
4 fzfid 11791 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
5 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
6 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
7 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
8 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
9 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
10 ssrab2 3434 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
119, 10eqsstri 3383 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
12 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1311, 12sseldi 3351 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1413eldifad 3337 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1514ad2antrr 720 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
16 elfzelz 11449 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
1716adantl 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  ZZ )
185, 6, 7, 8, 15, 17dchrzrhcl 22543 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
19 elfznn 11474 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
2019nnrpd 11022 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
2120adantl 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  RR+ )
2221rpcnd 11025 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  CC )
2321rpne0d 11028 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  =/=  0 )
2418, 22, 23divcld 10103 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
254, 24fsumcl 13206 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m )  e.  CC )
263, 25mulcld 9402 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )
27 rpssre 10997 . . . . 5  |-  RR+  C_  RR
28 2cn 10388 . . . . 5  |-  2  e.  CC
29 o1const 13093 . . . . 5  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O(1) )
3027, 28, 29mp2an 667 . . . 4  |-  ( x  e.  RR+  |->  2 )  e.  O(1)
3130a1i 11 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O(1) )
3227a1i 11 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 1red 9397 . . . 4  |-  ( ph  ->  1  e.  RR )
34 dchrisum0lem2.e . . . . 5  |-  ( ph  ->  E  e.  ( 0 [,) +oo ) )
35 elrege0 11388 . . . . . 6  |-  ( E  e.  ( 0 [,) +oo )  <->  ( E  e.  RR  /\  0  <_  E ) )
3635simplbi 457 . . . . 5  |-  ( E  e.  ( 0 [,) +oo )  ->  E  e.  RR )
3734, 36syl 16 . . . 4  |-  ( ph  ->  E  e.  RR )
383, 25absmuld 12936 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
39 rprege0 11001 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4039adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
41 absid 12781 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
4240, 41syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  x )  =  x )
4342oveq1d 6105 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( abs `  x )  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4438, 43eqtrd 2473 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )
4544adantrr 711 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  =  ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )
4625adantrr 711 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  e.  CC )
4746subid1d 9704 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )
4819adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
49 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5049fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
51 id 22 . . . . . . . . . . . . . . 15  |-  ( a  =  m  ->  a  =  m )
5250, 51oveq12d 6108 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
53 dchrisum0lem2.k . . . . . . . . . . . . . 14  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
54 ovex 6115 . . . . . . . . . . . . . 14  |-  ( ( X `  ( L `
 a ) )  /  a )  e. 
_V
5552, 53, 54fvmpt3i 5775 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  ( K `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
5648, 55syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
5756adantlrr 715 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
58 rpregt0 11000 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
5958ad2antrl 722 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
6059simpld 456 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
61 simprr 751 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
62 flge1nn 11663 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
6360, 61, 62syl2anc 656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
64 nnuz 10892 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6563, 64syl6eleq 2531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
6624adantlrr 715 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  m ) )  /  m )  e.  CC )
6757, 65, 66fsumser 13203 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  (  seq 1
(  +  ,  K
) `  ( |_ `  x ) ) )
68 rpvmasum.a . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
69 rpvmasum2.1 . . . . . . . . . . . . . 14  |-  .1.  =  ( 0g `  G )
70 eldifsni 3998 . . . . . . . . . . . . . . 15  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
7113, 70syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =/=  .1.  )
72 dchrisum0lem2.t . . . . . . . . . . . . . 14  |-  ( ph  ->  seq 1 (  +  ,  K )  ~~>  T )
73 dchrisum0lem2.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y ) )
746, 8, 68, 5, 7, 69, 14, 71, 53, 34, 72, 73, 9dchrvmaeq0 22712 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  e.  W  <->  T  =  0 ) )
7512, 74mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  T  =  0 )
7675adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  =  0 )
7776eqcomd 2446 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  =  T )
7867, 77oveq12d 6108 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m )  -  0 )  =  ( (  seq 1
(  +  ,  K
) `  ( |_ `  x ) )  -  T ) )
7947, 78eqtr3d 2475 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m )  =  ( (  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )
8079fveq2d 5692 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) ) )
81 1re 9381 . . . . . . . . . 10  |-  1  e.  RR
82 elicopnf 11381 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
8381, 82ax-mp 5 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
8460, 61, 83sylanbrc 659 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  ( 1 [,) +oo ) )
8573adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  A. y  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y ) )
86 fveq2 5688 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
8786fveq2d 5692 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  K
) `  ( |_ `  x ) ) )
8887oveq1d 6105 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T )  =  ( (  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )
8988fveq2d 5692 . . . . . . . . . 10  |-  ( y  =  x  ->  ( abs `  ( (  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) ) )
90 oveq2 6098 . . . . . . . . . 10  |-  ( y  =  x  ->  ( E  /  y )  =  ( E  /  x
) )
9189, 90breq12d 4302 . . . . . . . . 9  |-  ( y  =  x  ->  (
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y )  <->  ( abs `  ( (  seq 1
(  +  ,  K
) `  ( |_ `  x ) )  -  T ) )  <_ 
( E  /  x
) ) )
9291rspcv 3066 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  /  y )  -> 
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )  <_  ( E  /  x ) ) )
9384, 85, 92sylc 60 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  x ) )  -  T ) )  <_  ( E  /  x ) )
9480, 93eqbrtrd 4309 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  <_  ( E  /  x ) )
9546abscld 12918 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR )
9637adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  E  e.  RR )
97 lemuldiv2 10208 . . . . . . 7  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) )  e.  RR  /\  E  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
9895, 96, 59, 97syl3anc 1213 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  <_  E  <->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) )  <_  ( E  /  x ) ) )
9994, 98mpbird 232 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10045, 99eqbrtrd 4309 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  <_  E
)
10132, 26, 33, 37, 100elo1d 13010 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) )  e.  O(1) )
1021, 26, 31, 101o1mul2 13098 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) ) ) )  e.  O(1) )
103 fzfid 11791 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
10421rpsqrcld 12894 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
105104rpcnd 11025 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
106104rpne0d 11028 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
10718, 105, 106divcld 10103 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
108107adantr 462 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
109 elfznn 11474 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
110109adantl 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
111110nnrpd 11022 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
112111rpsqrcld 12894 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
113112rpcnd 11025 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  CC )
114112rpne0d 11028 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  =/=  0
)
115108, 113, 114divcld 10103 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
116103, 115fsumcl 13206 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
1174, 116fsumcl 13206 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
118 mulcl 9362 . . . 4  |-  ( ( 2  e.  CC  /\  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )  ->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) )  e.  CC )
11928, 26, 118sylancr 658 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  e.  CC )
120 2re 10387 . . . . . . . . . 10  |-  2  e.  RR
121 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
122 2z 10674 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
123 rpexpcl 11880 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
124121, 122, 123sylancl 657 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
125 rpdivcl 11009 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
126124, 20, 125syl2an 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
127126rpsqrcld 12894 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR+ )
128127rpred 11023 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  e.  RR )
129 remulcl 9363 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( sqr `  ( ( x ^ 2 )  /  m ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) )  e.  RR )
130120, 128, 129sylancr 658 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  RR )
131130recnd 9408 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
132107, 131mulcld 9402 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  e.  CC )
1334, 116, 132fsumsub 13251 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
134112rpcnne0d 11032 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
135 reccl 9997 . . . . . . . . . . 11  |-  ( ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 )  -> 
( 1  /  ( sqr `  d ) )  e.  CC )
136134, 135syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  CC )
137103, 136fsumcl 13206 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  e.  CC )
138107, 137, 131subdid 9796 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
139 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  m ) ) )
140139oveq2d 6106 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
1 ... ( |_ `  y ) )  =  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) )
141140sumeq1d 13174 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )
142 fveq2 5688 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  m ) ) )
143142oveq2d 6106 . . . . . . . . . . . 12  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  (
2  x.  ( sqr `  y ) )  =  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )
144141, 143oveq12d 6108 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  /  m )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
145 dchrisum0lem2.h . . . . . . . . . . 11  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
146 ovex 6115 . . . . . . . . . . 11  |-  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) )  e.  _V
147144, 145, 146fvmpt3i 5775 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
148126, 147syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) )
149148oveq2d 6106 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) ) ) ) )
150108, 113, 114divrecd 10106 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 1  /  ( sqr `  d ) ) ) )
151150sumeq2dv 13176 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
152103, 107, 136fsummulc2 13247 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x. 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( 1  /  ( sqr `  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
1  /  ( sqr `  d ) ) ) )
153151, 152eqtr4d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) ) )
154153oveq1d 6105 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( 1  /  ( sqr `  d ) ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
155138, 149, 1543eqtr4d 2483 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
156155sumeq2dv 13176 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) ) )
157 mulcl 9362 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
15828, 3, 157sylancr 658 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  x )  e.  CC )
1594, 158, 24fsummulc2 13247 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
1601, 3, 25mulassd 9405 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  x )  x.  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  m ) )  =  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) ) )
161158adantr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  x )  e.  CC )
162161, 107, 105, 106div12d 10139 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
163104rpcnne0d 11032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
164 divdiv1 10038 . . . . . . . . . . . . 13  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  m ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) ) )
16518, 163, 163, 164syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  m
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  m
) ) ) )
16621rprege0d 11030 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
167 remsqsqr 12742 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( ( sqr `  m
)  x.  ( sqr `  m ) )  =  m )
168166, 167syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  x.  ( sqr `  m
) )  =  m )
169168oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  m ) ) )  =  ( ( X `
 ( L `  m ) )  /  m ) )
170165, 169eqtr2d 2474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) )
171170oveq2d 6106 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( 2  x.  x )  x.  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  m
) ) ) )
172124adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
173172rprege0d 11030 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
174 sqrdiv 12751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
175173, 21, 174syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
17639ad2antlr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
177 sqrsq 12755 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
178176, 177syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
179178oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
180175, 179eqtrd 2473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
181180oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
182 2cnd 10390 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1833adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
184 divass 10008 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  (
( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 ) )  ->  ( ( 2  x.  x )  / 
( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
185182, 183, 163, 184syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  /  ( sqr `  m
) )  =  ( 2  x.  ( x  /  ( sqr `  m
) ) ) )
186181, 185eqtr4d 2476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( 2  x.  x
)  /  ( sqr `  m ) ) )
187186oveq2d 6106 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) )  =  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( 2  x.  x )  /  ( sqr `  m ) ) ) )
188162, 171, 1873eqtr4d 2483 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  x )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
189188sumeq2dv 13176 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( 2  x.  x )  x.  (
( X `  ( L `  m )
)  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
2  x.  ( sqr `  ( ( x ^
2 )  /  m
) ) ) ) )
190159, 160, 1893eqtr3d 2481 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  x. 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) )
191190oveq2d 6106 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  -  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( 2  x.  ( sqr `  ( ( x ^ 2 )  /  m ) ) ) ) ) )
192133, 156, 1913eqtr4d 2483 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )
193192mpteq2dva 4375 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) ) )
194 dchrisum0lem1.f . . . . 5  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
195 dchrisum0.c . . . . 5  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
196 dchrisum0.s . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
197 dchrisum0.1 . . . . 5  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
198 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
1996, 8, 68, 5, 7, 69, 9, 12, 194, 195, 196, 197, 145, 198dchrisum0lem2a 22725 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O(1) )
200193, 199eqeltrrd 2516 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  -  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) ) )  e.  O(1) )
201117, 119, 200o1dif 13103 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1)  <->  ( x  e.  RR+  |->  ( 2  x.  ( x  x.  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  m ) ) ) )  e.  O(1) ) )
202102, 201mpbird 232 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   {crab 2717    \ cdif 3322    C_ wss 3325   {csn 3874   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283   +oocpnf 9411    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   2c2 10367   ZZcz 10642   ZZ>=cuz 10857   RR+crp 10987   [,)cico 11298   ...cfz 11433   |_cfl 11636    seqcseq 11802   ^cexp 11861   sqrcsqr 12718   abscabs 12719    ~~> cli 12958    ~~> r crli 12959   O(1)co1 12960   sum_csu 13159   Basecbs 14170   0gc0g 14374   ZRHomczrh 17890  ℤ/nczn 17893  DChrcdchr 22530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-o1 12964  df-lo1 12965  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-dvds 13532  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-divs 14443  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-cntz 15828  df-od 16025  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-rnghom 16796  df-drng 16814  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234  df-2idl 17292  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-zring 17843  df-zrh 17894  df-zn 17897  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-cxp 21968  df-dchr 22531
This theorem is referenced by:  dchrisum0lem3  22727
  Copyright terms: Public domain W3C validator