MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Visualization version   GIF version

Theorem rlimo1 14195
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))

Proof of Theorem rlimo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 14080 . . . . . 6 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
21ffvelrnda 6267 . . . . 5 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
32ralrimiva 2949 . . . 4 (𝐹𝑟 𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) ∈ ℂ)
4 1rp 11712 . . . . 5 1 ∈ ℝ+
54a1i 11 . . . 4 (𝐹𝑟 𝐴 → 1 ∈ ℝ+)
61feqmptd 6159 . . . . 5 (𝐹𝑟 𝐴𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
7 id 22 . . . . 5 (𝐹𝑟 𝐴𝐹𝑟 𝐴)
86, 7eqbrtrrd 4607 . . . 4 (𝐹𝑟 𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ⇝𝑟 𝐴)
93, 5, 8rlimi 14092 . . 3 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1))
10 rlimcl 14082 . . . . . . . 8 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
1110adantr 480 . . . . . . 7 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
1211abscld 14023 . . . . . 6 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (abs‘𝐴) ∈ ℝ)
13 peano2re 10088 . . . . . 6 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈ ℝ)
152adantlr 747 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
1611adantr 480 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ)
1715, 16abs2difd 14044 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)))
1815abscld 14023 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
1912adantr 480 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ)
2018, 19resubcld 10337 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ)
2115, 16subcld 10271 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹𝑧) − 𝐴) ∈ ℂ)
2221abscld 14023 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ)
23 1red 9934 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ)
24 lelttr 10007 . . . . . . . . . . 11 ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2520, 22, 23, 24syl3anc 1318 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2617, 25mpand 707 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2718, 19, 23ltsubadd2d 10504 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2826, 27sylibd 228 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2914adantr 480 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ)
30 ltle 10005 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3118, 29, 30syl2anc 691 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3228, 31syld 46 . . . . . . 7 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3332imim2d 55 . . . . . 6 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3433ralimdva 2945 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
35 breq2 4587 . . . . . . . 8 (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3635imbi2d 329 . . . . . . 7 (𝑤 = ((abs‘𝐴) + 1) → ((𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3736ralbidv 2969 . . . . . 6 (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3837rspcev 3282 . . . . 5 ((((abs‘𝐴) + 1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
3914, 34, 38syl6an 566 . . . 4 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4039reximdva 3000 . . 3 (𝐹𝑟 𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
419, 40mpd 15 . 2 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
42 rlimss 14081 . . 3 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
43 elo12 14106 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
441, 42, 43syl2anc 691 . 2 (𝐹𝑟 𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4541, 44mpbird 246 1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822  𝑟 crli 14064  𝑂(1)co1 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068  df-o1 14069
This theorem is referenced by:  rlimdmo1  14196  o1const  14198  chebbnd2  24966  chto1lb  24967  chpo1ub  24969  vmadivsum  24971  dchrvmasumlem2  24987  dchrisum0lem1  25005  dchrisum0lem2a  25006  mudivsum  25019  mulog2sumlem2  25024  vmalogdivsum2  25027  2vmadivsumlem  25029  selberglem2  25035  selberg2lem  25039  selberg4lem1  25049  pntrsumo1  25054  pntrlog2bndlem2  25067  pntrlog2bndlem4  25069  pntrlog2bndlem5  25070
  Copyright terms: Public domain W3C validator