MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Visualization version   Unicode version

Theorem dchrisum0lem2a 24404
Description: Lemma for dchrisum0 24407. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
Assertion
Ref Expression
dchrisum0lem2a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y    U, m, x    x, W   
m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    U( y, a, d)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2a
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12218 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 simpl 463 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ph )
3 elfznn 11857 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
4 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3526 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3474 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
11 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1210, 11sseldi 3442 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1312eldifad 3428 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1413adantr 471 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
15 nnz 10988 . . . . . . . 8  |-  ( m  e.  NN  ->  m  e.  ZZ )
1615adantl 472 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
174, 5, 6, 7, 14, 16dchrzrhcl 24222 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
18 nnrp 11340 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
1918adantl 472 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
2019rpsqrtcld 13522 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
2120rpcnd 11372 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
2220rpne0d 11375 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
2317, 21, 22divcld 10411 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
242, 3, 23syl2an 484 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
251, 24fsumcl 13848 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
26 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
27 rlimcl 13616 . . . . 5  |-  ( H  ~~> r  U  ->  U  e.  CC )
2826, 27syl 17 . . . 4  |-  ( ph  ->  U  e.  CC )
2928adantr 471 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  U  e.  CC )
30 0xr 9713 . . . . . . . . 9  |-  0  e.  RR*
31 0lt1 10164 . . . . . . . . 9  |-  0  <  1
32 df-ioo 11668 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
33 df-ico 11670 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
34 xrltletr 11483 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
3532, 33, 34ixxss1 11682 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,) +oo )  C_  ( 0 (,) +oo ) )
3630, 31, 35mp2an 683 . . . . . . . 8  |-  ( 1 [,) +oo )  C_  ( 0 (,) +oo )
37 ioorp 11741 . . . . . . . 8  |-  ( 0 (,) +oo )  = 
RR+
3836, 37sseqtri 3476 . . . . . . 7  |-  ( 1 [,) +oo )  C_  RR+
39 resmpt 5173 . . . . . . 7  |-  ( ( 1 [,) +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,) +oo ) )  =  ( x  e.  ( 1 [,) +oo )  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) ) )
4038, 39ax-mp 5 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,) +oo ) )  =  ( x  e.  ( 1 [,) +oo )  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
4138sseli 3440 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR+ )
423adantl 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
43 fveq2 5888 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
4443fveq2d 5892 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
45 fveq2 5888 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
4644, 45oveq12d 6333 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
47 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
48 ovex 6343 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
4946, 47, 48fvmpt3i 5976 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
5042, 49syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
5141, 50sylanl2 661 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,) +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
52 1re 9668 . . . . . . . . . . . 12  |-  1  e.  RR
53 elicopnf 11759 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
5452, 53ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
55 flge1nn 12087 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
5654, 55sylbi 200 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) +oo )  ->  ( |_
`  x )  e.  NN )
5756adantl 472 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 [,) +oo ) )  ->  ( |_ `  x )  e.  NN )
58 nnuz 11223 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2550 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 [,) +oo ) )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
6041, 24sylanl2 661 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,) +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
6151, 59, 60fsumser 13845 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,) +oo ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )
6261mpteq2dva 4503 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,) +oo )  |-> 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  =  ( x  e.  ( 1 [,) +oo )  |->  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
6340, 62syl5eq 2508 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,) +oo ) )  =  ( x  e.  ( 1 [,) +oo )  |->  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
64 fveq2 5888 . . . . . . 7  |-  ( m  =  ( |_ `  x )  ->  (  seq 1 (  +  ,  F ) `  m
)  =  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) )
65 rpssre 11341 . . . . . . . . 9  |-  RR+  C_  RR
6665a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
6738, 66syl5ss 3455 . . . . . . 7  |-  ( ph  ->  ( 1 [,) +oo )  C_  RR )
68 1zzd 10997 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
6946cbvmptv 4509 . . . . . . . . . . . . 13  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7047, 69eqtri 2484 . . . . . . . . . . . 12  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7123, 70fmptd 6069 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> CC )
7271ffvelrnda 6045 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
7358, 68, 72serf 12273 . . . . . . . . 9  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
7473feqmptd 5941 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  F )  =  ( m  e.  NN  |->  (  seq 1 (  +  ,  F ) `  m ) ) )
75 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
7674, 75eqbrtrrd 4439 . . . . . . 7  |-  ( ph  ->  ( m  e.  NN  |->  (  seq 1 (  +  ,  F ) `  m ) )  ~~>  S )
7773ffvelrnda 6045 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  m
)  e.  CC )
7854simprbi 470 . . . . . . . 8  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
7978adantl 472 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
8058, 64, 67, 68, 76, 77, 79climrlim2 13660 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,) +oo )  |->  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )  ~~> r  S )
81 rlimo1 13729 . . . . . 6  |-  ( ( x  e.  ( 1 [,) +oo )  |->  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) )  ~~> r  S  ->  ( x  e.  ( 1 [,) +oo )  |->  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O(1) )
8280, 81syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 [,) +oo )  |->  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O(1) )
8363, 82eqeltrd 2540 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,) +oo ) )  e.  O(1) )
84 eqid 2462 . . . . . 6  |-  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
8525, 84fmptd 6069 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) ) : RR+ --> CC )
86 1red 9684 . . . . 5  |-  ( ph  ->  1  e.  RR )
8785, 66, 86o1resb 13679 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  O(1)  <->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,) +oo ) )  e.  O(1) ) )
8883, 87mpbird 240 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  e.  O(1) )
89 o1const 13732 . . . 4  |-  ( (
RR+  C_  RR  /\  U  e.  CC )  ->  (
x  e.  RR+  |->  U )  e.  O(1) )
9065, 28, 89sylancr 674 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  U )  e.  O(1) )
9125, 29, 88, 90o1mul2 13737 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O(1) )
92 simpr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
93 2z 10998 . . . . . . . . 9  |-  2  e.  ZZ
94 rpexpcl 12323 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
9592, 93, 94sylancl 673 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
963nnrpd 11368 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
97 rpdivcl 11354 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
9895, 96, 97syl2an 484 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
99 dchrisum0lem2.h . . . . . . . . 9  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
10099divsqrsumf 23955 . . . . . . . 8  |-  H : RR+
--> RR
101100ffvelrni 6044 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  e.  RR )
10298, 101syl 17 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  RR )
103102recnd 9695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  CC )
10424, 103mulcld 9689 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
1051, 104fsumcl 13848 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  e.  CC )
10625, 29mulcld 9689 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  e.  CC )
10726ad2antrr 737 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  H  ~~> r  U
)
108107, 27syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  U  e.  CC )
10924, 108mulcld 9689 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U )  e.  CC )
1101, 104, 109fsumsub 13898 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
11124, 103, 108subdid 10102 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
112111sumeq2dv 13818 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
1131, 29, 24fsummulc1 13895 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) )
114113oveq2d 6331 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
115110, 112, 1143eqtr4d 2506 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
116115mpteq2dva 4503 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) ) )
117103, 108subcld 10012 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( H `  ( (
x ^ 2 )  /  m ) )  -  U )  e.  CC )
11824, 117mulcld 9689 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  CC )
1191, 118fsumcl 13848 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  e.  CC )
120119abscld 13547 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
121118abscld 13547 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  e.  RR )
1221, 121fsumrecl 13849 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
123 1red 9684 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  RR )
1241, 118fsumabs 13910 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) ) )
125 rprege0 11345 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
126125adantl 472 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
127126simpld 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
128 reflcl 12064 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
129127, 128syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
130129, 92rerpdivcld 11398 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  e.  RR )
131 simplr 767 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
132131rprecred 11381 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
13324abscld 13547 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
13496rpsqrtcld 13522 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  ( sqr `  m )  e.  RR+ )
135134adantl 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
136135rprecred 11381 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  RR )
137117abscld 13547 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  RR )
138135, 131rpdivcld 11387 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR+ )
13965, 138sseldi 3442 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR )
14024absge0d 13555 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) ) )
141117absge0d 13555 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( H `  ( ( x ^ 2 )  /  m ) )  -  U ) ) )
1422, 3, 17syl2an 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
143135rpcnd 11372 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
144135rpne0d 11375 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
145142, 143, 144absdivd 13566 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( abs `  ( sqr `  m
) ) ) )
146135rprege0d 11377 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  RR  /\  0  <_ 
( sqr `  m
) ) )
147 absid 13408 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  m
)  e.  RR  /\  0  <_  ( sqr `  m
) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
148146, 147syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
149148oveq2d 6331 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( abs `  ( sqr `  m
) ) )  =  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m
) ) )
150145, 149eqtrd 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( sqr `  m ) ) )
151142abscld 13547 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  e.  RR )
152 1red 9684 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
153 eqid 2462 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  =  (
Base `  Z )
15413ad2antrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
155 rpvmasum.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN )
156155nnnn0d 10954 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN0 )
1575, 153, 7znzrhfo 19167 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
158 fof 5816 . . . . . . . . . . . . . . . . . 18  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
159156, 157, 1583syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
160159adantr 471 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  L : ZZ
--> ( Base `  Z
) )
161 elfzelz 11829 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
162 ffvelrn 6043 . . . . . . . . . . . . . . . 16  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
163160, 161, 162syl2an 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  m )  e.  (
Base `  Z )
)
1644, 6, 5, 153, 154, 163dchrabs2 24239 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  <_  1
)
165151, 152, 135, 164lediv1dd 11425 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m ) )  <_  ( 1  / 
( sqr `  m
) ) )
166150, 165eqbrtrd 4437 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( 1  / 
( sqr `  m
) ) )
16799, 107divsqrtsum2 23957 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( ( x ^ 2 )  /  m )  e.  RR+ )  ->  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  <_  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) ) )
16898, 167mpdan 679 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
1  /  ( sqr `  ( ( x ^
2 )  /  m
) ) ) )
16995rprege0d 11377 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
170 sqrtdiv 13378 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
171169, 96, 170syl2an 484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
172125ad2antlr 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
173 sqrtsq 13382 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
174172, 173syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
175174oveq1d 6330 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
176171, 175eqtrd 2496 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
177176oveq2d 6331 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 1  /  ( x  /  ( sqr `  m
) ) ) )
178 rpcnne0 11348 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
179178ad2antlr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180135rpcnne0d 11379 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
181 recdiv 10341 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
182179, 180, 181syl2anc 671 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
183177, 182eqtrd 2496 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( sqr `  m
)  /  x ) )
184168, 183breqtrd 4441 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
( sqr `  m
)  /  x ) )
185133, 136, 137, 139, 140, 141, 166, 184lemul12ad 10577 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
( 1  /  ( sqr `  m ) )  x.  ( ( sqr `  m )  /  x
) ) )
18624, 117absmuld 13565 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  =  ( ( abs `  (
( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) ) )
187 1cnd 9685 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
188 dmdcan 10345 . . . . . . . . . . . . 13  |-  ( ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  ( ( ( sqr `  m )  /  x )  x.  ( 1  /  ( sqr `  m ) ) )  =  ( 1  /  x ) )
189180, 179, 187, 188syl3anc 1276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( 1  /  x
) )
190138rpcnd 11372 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  CC )
191 reccl 10305 . . . . . . . . . . . . . 14  |-  ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  -> 
( 1  /  ( sqr `  m ) )  e.  CC )
192180, 191syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  CC )
193190, 192mulcomd 9690 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
194189, 193eqtr3d 2498 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
195185, 186, 1943brtr4d 4447 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
1  /  x ) )
1961, 121, 132, 195fsumle 13908 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
197 flge0nn0 12086 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
198 hashfz1 12561 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
199126, 197, 1983syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( # `  (
1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
200199oveq1d 6330 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( # `
 ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
20192rpreccld 11380 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
202201rpcnd 11372 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  CC )
203 fsumconst 13900 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
2041, 202, 203syl2anc 671 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
205129recnd 9695 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  CC )
206178adantl 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
207206simpld 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
208206simprd 469 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  =/=  0 )
209205, 207, 208divrecd 10414 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
210200, 204, 2093eqtr4d 2506 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
211196, 210breqtrd 4441 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
( ( |_ `  x )  /  x
) )
212 flle 12067 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
213127, 212syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  x
)
214127recnd 9695 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
215214mulid1d 9686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  1 )  =  x )
216213, 215breqtrrd 4443 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  (
x  x.  1 ) )
217 rpregt0 11344 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
218217adantl 472 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
219 ledivmul 10509 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
220129, 123, 218, 219syl3anc 1276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
221216, 220mpbird 240 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  <_  1
)
222122, 130, 123, 211, 221letrd 9818 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
223120, 122, 123, 124, 222letrd 9818 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
224223adantrr 728 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
22566, 119, 86, 86, 224elo1d 13649 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  O(1) )
226116, 225eqeltrrd 2541 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) )  e.  O(1) )
227105, 106, 226o1dif 13742 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) ) )  e.  O(1)  <->  (
x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) )  e.  O(1) ) )
22891, 227mpbird 240 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   {crab 2753    \ cdif 3413    C_ wss 3416   {csn 3980   class class class wbr 4416    |-> cmpt 4475    |` cres 4855   -->wf 5597   -onto->wfo 5599   ` cfv 5601  (class class class)co 6315   Fincfn 7595   CCcc 9563   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570   +oocpnf 9698   RR*cxr 9700    < clt 9701    <_ cle 9702    - cmin 9886    / cdiv 10297   NNcn 10637   2c2 10687   NN0cn0 10898   ZZcz 10966   ZZ>=cuz 11188   RR+crp 11331   (,)cioo 11664   [,)cico 11666   ...cfz 11813   |_cfl 12058    seqcseq 12245   ^cexp 12304   #chash 12547   sqrcsqrt 13345   abscabs 13346    ~~> cli 13597    ~~> r crli 13598   O(1)co1 13599   sum_csu 13801   Basecbs 15170   0gc0g 15387   ZRHomczrh 19120  ℤ/nczn 19123  DChrcdchr 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-disj 4388  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-tpos 6999  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-omul 7213  df-er 7389  df-ec 7391  df-qs 7395  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-fi 7951  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-acn 8402  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-ioo 11668  df-ioc 11669  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-mod 12129  df-seq 12246  df-exp 12305  df-fac 12492  df-bc 12520  df-hash 12548  df-shft 13179  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-limsup 13575  df-clim 13601  df-rlim 13602  df-o1 13603  df-lo1 13604  df-sum 13802  df-ef 14170  df-sin 14172  df-cos 14173  df-pi 14175  df-dvds 14355  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-hom 15263  df-cco 15264  df-rest 15370  df-topn 15371  df-0g 15389  df-gsum 15390  df-topgen 15391  df-pt 15392  df-prds 15395  df-xrs 15449  df-qtop 15455  df-imas 15456  df-qus 15458  df-xps 15459  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-mhm 16631  df-submnd 16632  df-grp 16722  df-minusg 16723  df-sbg 16724  df-mulg 16725  df-subg 16863  df-nsg 16864  df-eqg 16865  df-ghm 16930  df-cntz 17020  df-od 17221  df-cmn 17481  df-abl 17482  df-mgp 17773  df-ur 17785  df-ring 17831  df-cring 17832  df-oppr 17900  df-dvdsr 17918  df-unit 17919  df-invr 17949  df-dvr 17960  df-rnghom 17992  df-drng 18026  df-subrg 18055  df-lmod 18142  df-lss 18205  df-lsp 18244  df-sra 18444  df-rgmod 18445  df-lidl 18446  df-rsp 18447  df-2idl 18505  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-fbas 19016  df-fg 19017  df-cnfld 19020  df-zring 19089  df-zrh 19124  df-zn 19127  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cld 20083  df-ntr 20084  df-cls 20085  df-nei 20163  df-lp 20201  df-perf 20202  df-cn 20292  df-cnp 20293  df-haus 20380  df-cmp 20451  df-tx 20626  df-hmeo 20819  df-fil 20910  df-fm 21002  df-flim 21003  df-flf 21004  df-xms 21384  df-ms 21385  df-tms 21386  df-cncf 21959  df-limc 22870  df-dv 22871  df-log 23555  df-cxp 23556  df-dchr 24210
This theorem is referenced by:  dchrisum0lem2  24405
  Copyright terms: Public domain W3C validator