MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Structured version   Visualization version   GIF version

Theorem rlimi 14092
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimi (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rlimi.2 . 2 (𝜑𝑅 ∈ ℝ+)
2 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
3 rlimf 14080 . . . . . . 7 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
5 rlimi.1 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
6 eqid 2610 . . . . . . . . . 10 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
76fmpt 6289 . . . . . . . . 9 (∀𝑧𝐴 𝐵𝑉 ↔ (𝑧𝐴𝐵):𝐴𝑉)
85, 7sylib 207 . . . . . . . 8 (𝜑 → (𝑧𝐴𝐵):𝐴𝑉)
9 fdm 5964 . . . . . . . 8 ((𝑧𝐴𝐵):𝐴𝑉 → dom (𝑧𝐴𝐵) = 𝐴)
108, 9syl 17 . . . . . . 7 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
1110feq2d 5944 . . . . . 6 (𝜑 → ((𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ))
124, 11mpbid 221 . . . . 5 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
136fmpt 6289 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
1412, 13sylibr 223 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
15 rlimss 14081 . . . . . 6 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
162, 15syl 17 . . . . 5 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
1710, 16eqsstr3d 3603 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rlimcl 14082 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
192, 18syl 17 . . . 4 (𝜑𝐶 ∈ ℂ)
2014, 17, 19rlim2 14075 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
212, 20mpbid 221 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
22 breq2 4587 . . . . 5 (𝑥 = 𝑅 → ((abs‘(𝐵𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑅))
2322imbi2d 329 . . . 4 (𝑥 = 𝑅 → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
2423rexralbidv 3040 . . 3 (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
2524rspcv 3278 . 2 (𝑅 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
261, 21, 25sylc 63 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822  𝑟 crli 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-rlim 14068
This theorem is referenced by:  rlimi2  14093  rlimclim1  14124  rlimuni  14129  rlimcld2  14157  rlimcn1  14167  rlimcn2  14169  rlimo1  14195  o1rlimmul  14197  rlimno1  14232  xrlimcnp  24495  rlimcxp  24500  chtppilimlem2  24963  dchrisumlem3  24980
  Copyright terms: Public domain W3C validator