Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem3 Structured version   Visualization version   GIF version

Theorem mulog2sumlem3 25025
 Description: Lemma for mulog2sum 25026. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
Assertion
Ref Expression
mulog2sumlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑛,𝑥,𝑦   𝑥,𝐹   𝑛,𝐿,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑛)   𝐿(𝑦,𝑖)

Proof of Theorem mulog2sumlem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2cn 10968 . . . . . 6 2 ∈ ℂ
21a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
3 fzfid 12634 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
4 elfznn 12241 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
6 mucl 24667 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
87zred 11358 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
98, 5nndivred 10946 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
109recnd 9947 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
11 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
124nnrpd 11746 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
13 rpdivcl 11732 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
1411, 12, 13syl2an 493 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
1514relogcld 24173 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1615recnd 9947 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
1716sqcld 12868 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
1817halfcld 11154 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
1910, 18mulcld 9939 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
203, 19fsumcl 14311 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
21 relogcl 24126 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2221adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2322recnd 9947 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
242, 20, 23subdid 10365 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))))
253, 2, 19fsummulc2 14358 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))))
261a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
2726, 10, 18mul12d 10124 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))))
28 2ne0 10990 . . . . . . . . . . 11 2 ≠ 0
2928a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ≠ 0)
3017, 26, 29divcan2d 10682 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((log‘(𝑥 / 𝑛))↑2) / 2)) = ((log‘(𝑥 / 𝑛))↑2))
3130oveq2d 6565 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3227, 31eqtrd 2644 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3332sumeq2dv 14281 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3425, 33eqtrd 2644 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3534oveq1d 6564 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3624, 35eqtrd 2644 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3736mpteq2dva 4672 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))))
3820, 23subcld 10271 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)) ∈ ℂ)
39 rpssre 11719 . . . . 5 + ⊆ ℝ
40 o1const 14198 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
4139, 1, 40mp2an 704 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
4241a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
43 emre 24532 . . . . . . . . . . . . 13 γ ∈ ℝ
4443recni 9931 . . . . . . . . . . . 12 γ ∈ ℂ
45 mulcl 9899 . . . . . . . . . . . 12 ((γ ∈ ℂ ∧ (log‘(𝑥 / 𝑛)) ∈ ℂ) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
4644, 16, 45sylancr 694 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
47 mulog2sumlem.1 . . . . . . . . . . . . 13 (𝜑𝐹𝑟 𝐿)
48 rlimcl 14082 . . . . . . . . . . . . 13 (𝐹𝑟 𝐿𝐿 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
5049ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐿 ∈ ℂ)
5146, 50subcld 10271 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
5218, 51addcld 9938 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5310, 52mulcld 9939 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
543, 53fsumcl 14311 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
5510, 51mulcld 9939 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
563, 55fsumcl 14311 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5754, 23, 56sub32d 10303 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)))
583, 53, 55fsumsub 14362 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
5910, 52, 51subdid 10365 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
6018, 51pncand 10272 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
6160oveq2d 6565 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6259, 61eqtr3d 2646 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6362sumeq2dv 14281 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6458, 63eqtr3d 2646 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6564oveq1d 6564 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6657, 65eqtrd 2644 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6766mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))))
6854, 23subcld 10271 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) ∈ ℂ)
69 logdivsum.1 . . . . . 6 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
70 eqid 2610 . . . . . 6 ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
71 eqid 2610 . . . . . 6 (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
7269, 47, 70, 71mulog2sumlem2 25024 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥))) ∈ 𝑂(1))
7344a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → γ ∈ ℂ)
7410, 16mulcld 9939 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
753, 73, 74fsummulc2 14358 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
7649adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐿 ∈ ℂ)
773, 76, 10fsummulc1 14359 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿))
7875, 77oveq12d 6567 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
79 mulcl 9899 . . . . . . . . . 10 ((γ ∈ ℂ ∧ (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8044, 74, 79sylancr 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8110, 50mulcld 9939 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
823, 80, 81fsumsub 14362 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
8344a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℂ)
8483, 10, 16mul12d 10124 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))))
8584oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8610, 46, 50subdid 10365 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8785, 86eqtr4d 2647 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8887sumeq2dv 14281 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8978, 82, 883eqtr2d 2650 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
9089mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
913, 74fsumcl 14311 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
92 mulcl 9899 . . . . . . . 8 ((γ ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
9344, 91, 92sylancr 694 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
943, 10fsumcl 14311 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
9594, 76mulcld 9939 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
9644a1i 11 . . . . . . . . 9 (𝜑 → γ ∈ ℂ)
97 o1const 14198 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
9839, 96, 97sylancr 694 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
99 mulogsum 25021 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
10099a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1))
10173, 91, 98, 100o1mul2 14203 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
102 mudivsum 25019 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
103102a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
104 o1const 14198 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ 𝐿 ∈ ℂ) → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10539, 49, 104sylancr 694 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10694, 76, 103, 105o1mul2 14203 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) ∈ 𝑂(1))
10793, 95, 101, 106o1sub2 14204 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) ∈ 𝑂(1))
10890, 107eqeltrrd 2689 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ 𝑂(1))
10968, 56, 72, 108o1sub2 14204 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) ∈ 𝑂(1))
11067, 109eqeltrrd 2689 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) ∈ 𝑂(1))
1112, 38, 42, 110o1mul2 14203 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) ∈ 𝑂(1))
11237, 111eqeltrrd 2689 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453  ↑cexp 12722  abscabs 13822   ⇝𝑟 crli 14064  𝑂(1)co1 14065  Σcsu 14264  eceu 14632  logclog 24105  γcem 24518  μcmu 24621 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-em 24519  df-mu 24627 This theorem is referenced by:  mulog2sum  25026
 Copyright terms: Public domain W3C validator