MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Unicode version

Theorem rlimsqzlem 13482
Description: Lemma for rlimsqz 13483 and rlimsqz2 13484. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m  |-  ( ph  ->  M  e.  RR )
rlimsqzlem.e  |-  ( ph  ->  E  e.  CC )
rlimsqzlem.1  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimsqzlem.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimsqzlem.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
rlimsqzlem.4  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
Assertion
Ref Expression
rlimsqzlem  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Distinct variable groups:    x, A    x, D    x, E    ph, x    x, M
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem rlimsqzlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
2 rlimsqzlem.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  RR )
32ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  e.  RR )
42ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  M  e.  RR )
5 elicopnf 11645 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
64, 5syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
76simprbda 623 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  z  e.  RR )
87adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  e.  RR )
9 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
119, 10dmmptd 5717 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
12 rlimss 13336 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  dom  ( x  e.  A  |->  B )  C_  RR )
131, 12syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1411, 13eqsstr3d 3534 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
1514adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
1615sselda 3499 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  x  e.  RR )
1716adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  x  e.  RR )
186simplbda 624 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  M  <_  z
)
1918adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  z )
20 simprr 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  <_  x )
213, 8, 17, 19, 20letrd 9756 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  x )
22 rlimsqzlem.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2322anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E ) )  <_ 
( abs `  ( B  -  D )
) )
2423adantllr 718 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2521, 24syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  <_  ( abs `  ( B  -  D ) ) )
26 rlimsqzlem.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
27 rlimsqzlem.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E  e.  CC )
2827adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  E  e.  CC )
2926, 28subcld 9950 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  -  E )  e.  CC )
3029abscld 13278 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3130adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3231adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  e.  RR )
33 rlimcl 13337 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
341, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  CC )
3534adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  CC )
3610, 35subcld 9950 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  D )  e.  CC )
3736abscld 13278 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
3837adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
3938adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( B  -  D
) )  e.  RR )
40 rpre 11251 . . . . . . . . . . . 12  |-  ( y  e.  RR+  ->  y  e.  RR )
4140ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  y  e.  RR )
42 lelttr 9692 . . . . . . . . . . 11  |-  ( ( ( abs `  ( C  -  E )
)  e.  RR  /\  ( abs `  ( B  -  D ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4332, 39, 41, 42syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( (
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4425, 43mpand 675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( ( abs `  ( B  -  D ) )  < 
y  ->  ( abs `  ( C  -  E
) )  <  y
) )
4544expr 615 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D
) )  <  y  ->  ( abs `  ( C  -  E )
)  <  y )
) )
4645an32s 804 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D )
)  <  y  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
4746a2d 26 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
4847ralimdva 2865 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  ->  ( A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
4948reximdva 2932 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D
) )  <  y
)  ->  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5049ralimdva 2865 . . 3  |-  ( ph  ->  ( A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  (
z  <_  x  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
5110ralrimiva 2871 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
5251, 14, 34, 2rlim3 13332 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )
) )
5326ralrimiva 2871 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  CC )
5453, 14, 27, 2rlim3 13332 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~> r  E  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5550, 52, 543imtr4d 268 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  ->  ( x  e.  A  |->  C )  ~~> r  E
) )
561, 55mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   +oocpnf 9642    < clt 9645    <_ cle 9646    - cmin 9824   RR+crp 11245   [,)cico 11556   abscabs 13078    ~~> r crli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-rlim 13323
This theorem is referenced by:  rlimsqz  13483  rlimsqz2  13484  cxploglim2  23433  logfacrlim  23624  logexprlim  23625
  Copyright terms: Public domain W3C validator