MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Unicode version

Theorem rlimsqzlem 13433
Description: Lemma for rlimsqz 13434 and rlimsqz2 13435. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m  |-  ( ph  ->  M  e.  RR )
rlimsqzlem.e  |-  ( ph  ->  E  e.  CC )
rlimsqzlem.1  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimsqzlem.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimsqzlem.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
rlimsqzlem.4  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
Assertion
Ref Expression
rlimsqzlem  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Distinct variable groups:    x, A    x, D    x, E    ph, x    x, M
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem rlimsqzlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
2 rlimsqzlem.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  RR )
32ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  e.  RR )
42ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  M  e.  RR )
5 elicopnf 11619 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
64, 5syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
76simprbda 623 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  z  e.  RR )
87adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  e.  RR )
9 rlimsqzlem.2 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
10 eqid 2467 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
119, 10fmptd 6044 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
12 fdm 5734 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B ) : A --> CC  ->  dom  ( x  e.  A  |->  B )  =  A )
1311, 12syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
14 rlimss 13287 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  dom  ( x  e.  A  |->  B )  C_  RR )
151, 14syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1613, 15eqsstr3d 3539 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
1716adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
1817sselda 3504 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  x  e.  RR )
1918adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  x  e.  RR )
206simplbda 624 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  M  <_  z
)
2120adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  z )
22 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  <_  x )
233, 8, 19, 21, 22letrd 9737 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  x )
24 rlimsqzlem.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2524anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E ) )  <_ 
( abs `  ( B  -  D )
) )
2625adantllr 718 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2723, 26syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  <_  ( abs `  ( B  -  D ) ) )
28 rlimsqzlem.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
29 rlimsqzlem.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E  e.  CC )
3029adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  E  e.  CC )
3128, 30subcld 9929 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  -  E )  e.  CC )
3231abscld 13229 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3332adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3433adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  e.  RR )
35 rlimcl 13288 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
361, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  CC )
3736adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  CC )
389, 37subcld 9929 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  D )  e.  CC )
3938abscld 13229 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
4039adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
4140adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( B  -  D
) )  e.  RR )
42 rpre 11225 . . . . . . . . . . . 12  |-  ( y  e.  RR+  ->  y  e.  RR )
4342ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  y  e.  RR )
44 lelttr 9674 . . . . . . . . . . 11  |-  ( ( ( abs `  ( C  -  E )
)  e.  RR  /\  ( abs `  ( B  -  D ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4534, 41, 43, 44syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( (
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4627, 45mpand 675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( ( abs `  ( B  -  D ) )  < 
y  ->  ( abs `  ( C  -  E
) )  <  y
) )
4746expr 615 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D
) )  <  y  ->  ( abs `  ( C  -  E )
)  <  y )
) )
4847an32s 802 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D )
)  <  y  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
4948a2d 26 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5049ralimdva 2872 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  ->  ( A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5150reximdva 2938 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D
) )  <  y
)  ->  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5251ralimdva 2872 . . 3  |-  ( ph  ->  ( A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  (
z  <_  x  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
539ralrimiva 2878 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
5453, 16, 36, 2rlim3 13283 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )
) )
5528ralrimiva 2878 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  CC )
5655, 16, 29, 2rlim3 13283 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~> r  E  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5752, 54, 563imtr4d 268 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  ->  ( x  e.  A  |->  C )  ~~> r  E
) )
581, 57mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   -->wf 5583   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   +oocpnf 9624    < clt 9627    <_ cle 9628    - cmin 9804   RR+crp 11219   [,)cico 11530   abscabs 13029    ~~> r crli 13270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-rp 11220  df-ico 11534  df-seq 12075  df-exp 12134  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-rlim 13274
This theorem is referenced by:  rlimsqz  13434  rlimsqz2  13435  cxploglim2  23052  logfacrlim  23243  logexprlim  23244
  Copyright terms: Public domain W3C validator