MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Unicode version

Theorem rlimsqzlem 13138
Description: Lemma for rlimsqz 13139 and rlimsqz2 13140. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m  |-  ( ph  ->  M  e.  RR )
rlimsqzlem.e  |-  ( ph  ->  E  e.  CC )
rlimsqzlem.1  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimsqzlem.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimsqzlem.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
rlimsqzlem.4  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
Assertion
Ref Expression
rlimsqzlem  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Distinct variable groups:    x, A    x, D    x, E    ph, x    x, M
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem rlimsqzlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
2 rlimsqzlem.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  RR )
32ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  e.  RR )
42ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  M  e.  RR )
5 elicopnf 11397 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
64, 5syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  (
z  e.  ( M [,) +oo )  <->  ( z  e.  RR  /\  M  <_ 
z ) ) )
76simprbda 623 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  z  e.  RR )
87adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  e.  RR )
9 rlimsqzlem.2 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
10 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
119, 10fmptd 5879 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
12 fdm 5575 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B ) : A --> CC  ->  dom  ( x  e.  A  |->  B )  =  A )
1311, 12syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
14 rlimss 12992 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  dom  ( x  e.  A  |->  B )  C_  RR )
151, 14syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1613, 15eqsstr3d 3403 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
1716adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
1817sselda 3368 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  x  e.  RR )
1918adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  x  e.  RR )
206simplbda 624 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  M  <_  z
)
2120adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  z )
22 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  z  <_  x )
233, 8, 19, 21, 22letrd 9540 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  M  <_  x )
24 rlimsqzlem.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  -> 
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2524anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E ) )  <_ 
( abs `  ( B  -  D )
) )
2625adantllr 718 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  M  <_  x )  ->  ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) ) )
2723, 26syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  <_  ( abs `  ( B  -  D ) ) )
28 rlimsqzlem.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
29 rlimsqzlem.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E  e.  CC )
3029adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  E  e.  CC )
3128, 30subcld 9731 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  -  E )  e.  CC )
3231abscld 12934 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3332adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( C  -  E ) )  e.  RR )
3433adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( C  -  E
) )  e.  RR )
35 rlimcl 12993 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
361, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  CC )
3736adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  CC )
389, 37subcld 9731 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  D )  e.  CC )
3938abscld 12934 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
4039adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  ->  ( abs `  ( B  -  D ) )  e.  RR )
4140adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( abs `  ( B  -  D
) )  e.  RR )
42 rpre 11009 . . . . . . . . . . . 12  |-  ( y  e.  RR+  ->  y  e.  RR )
4342ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  y  e.  RR )
44 lelttr 9477 . . . . . . . . . . 11  |-  ( ( ( abs `  ( C  -  E )
)  e.  RR  /\  ( abs `  ( B  -  D ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4534, 41, 43, 44syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( (
( abs `  ( C  -  E )
)  <_  ( abs `  ( B  -  D
) )  /\  ( abs `  ( B  -  D ) )  < 
y )  ->  ( abs `  ( C  -  E ) )  < 
y ) )
4627, 45mpand 675 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  ( z  e.  ( M [,) +oo )  /\  z  <_  x ) )  ->  ( ( abs `  ( B  -  D ) )  < 
y  ->  ( abs `  ( C  -  E
) )  <  y
) )
4746expr 615 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  x  e.  A )  /\  z  e.  ( M [,) +oo ) )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D
) )  <  y  ->  ( abs `  ( C  -  E )
)  <  y )
) )
4847an32s 802 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( z  <_  x  ->  ( ( abs `  ( B  -  D )
)  <  y  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
4948a2d 26 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  /\  x  e.  A )  ->  ( ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5049ralimdva 2806 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  z  e.  ( M [,) +oo ) )  ->  ( A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5150reximdva 2840 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D
) )  <  y
)  ->  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5251ralimdva 2806 . . 3  |-  ( ph  ->  ( A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )  ->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  (
z  <_  x  ->  ( abs `  ( C  -  E ) )  <  y ) ) )
539ralrimiva 2811 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
5453, 16, 36, 2rlim3 12988 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  D )
)  <  y )
) )
5528ralrimiva 2811 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  CC )
5655, 16, 29, 2rlim3 12988 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~> r  E  <->  A. y  e.  RR+  E. z  e.  ( M [,) +oo ) A. x  e.  A  ( z  <_  x  ->  ( abs `  ( C  -  E )
)  <  y )
) )
5752, 54, 563imtr4d 268 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  D  ->  ( x  e.  A  |->  C )  ~~> r  E
) )
581, 57mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728    C_ wss 3340   class class class wbr 4304    e. cmpt 4362   dom cdm 4852   -->wf 5426   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   +oocpnf 9427    < clt 9430    <_ cle 9431    - cmin 9607   RR+crp 11003   [,)cico 11314   abscabs 12735    ~~> r crli 12975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-ico 11318  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-rlim 12979
This theorem is referenced by:  rlimsqz  13139  rlimsqz2  13140  cxploglim2  22384  logfacrlim  22575  logexprlim  22576
  Copyright terms: Public domain W3C validator