Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem48 Structured version   Visualization version   GIF version

Theorem etransclem48 39175
 Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
etransclem48.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem48.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem48.a 𝐴 = (coeff‘𝑄)
etransclem48.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem48.m 𝑀 = (deg‘𝑄)
etransclem48.c 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
etransclem48.s 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
etransclem48.i 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
etransclem48.t 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
Assertion
Ref Expression
etransclem48 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐴,𝑛,𝑗   𝐶,𝑖,𝑛   𝑖,𝐼,𝑛   𝑗,𝑀,𝑘   𝑛,𝑀   𝑄,𝑗   𝑆,𝑖   𝑇,𝑗,𝑘   𝜑,𝑖,𝑛   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑗,𝑘)   𝑄(𝑖,𝑘,𝑛)   𝑆(𝑗,𝑘,𝑛)   𝑇(𝑖,𝑛)   𝐼(𝑗,𝑘)   𝑀(𝑖)

Proof of Theorem etransclem48
Dummy variables 𝑥 𝑦 𝑧 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem48.q . . . . . . . . . 10 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
21eldifad 3552 . . . . . . . . 9 (𝜑𝑄 ∈ (Poly‘ℤ))
3 0zd 11266 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4 etransclem48.a . . . . . . . . . 10 𝐴 = (coeff‘𝑄)
54coef2 23791 . . . . . . . . 9 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
62, 3, 5syl2anc 691 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
7 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
96, 8ffvelrnd 6268 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℤ)
10 zabscl 13901 . . . . . . 7 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
119, 10syl 17 . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
12 etransclem48.m . . . . . . . . 9 𝑀 = (deg‘𝑄)
13 dgrcl 23793 . . . . . . . . . 10 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
142, 13syl 17 . . . . . . . . 9 (𝜑 → (deg‘𝑄) ∈ ℕ0)
1512, 14syl5eqel 2692 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1615faccld 12933 . . . . . . 7 (𝜑 → (!‘𝑀) ∈ ℕ)
1716nnzd 11357 . . . . . 6 (𝜑 → (!‘𝑀) ∈ ℤ)
18 ssrab2 3650 . . . . . . . 8 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℕ0
19 nn0ssz 11275 . . . . . . . 8 0 ⊆ ℤ
2018, 19sstri 3577 . . . . . . 7 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℤ
21 etransclem48.i . . . . . . . 8 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
22 nn0uz 11598 . . . . . . . . . 10 0 = (ℤ‘0)
2318, 22sseqtri 3600 . . . . . . . . 9 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0)
24 1rp 11712 . . . . . . . . . . 11 1 ∈ ℝ+
25 nfv 1830 . . . . . . . . . . . . . 14 𝑛𝜑
26 nfmpt1 4675 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0𝐶)
27 nfmpt1 4675 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
28 etransclem48.s . . . . . . . . . . . . . . 15 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
29 nfmpt1 4675 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
3028, 29nfcxfr 2749 . . . . . . . . . . . . . 14 𝑛𝑆
31 nn0ex 11175 . . . . . . . . . . . . . . . . 17 0 ∈ V
3231mptex 6390 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ0𝐶) ∈ V)
34 etransclem48.c . . . . . . . . . . . . . . . 16 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
35 fzfid 12634 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝑀) ∈ Fin)
366adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
37 elfznn0 12302 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
3936, 38ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
4039zcnd 11359 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
41 ere 14658 . . . . . . . . . . . . . . . . . . . . . . . 24 e ∈ ℝ
4241recni 9931 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℂ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
44 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
4544zcnd 11359 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
4743, 46cxpcld 24254 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
4840, 47mulcld 9939 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
4948abscld 14023 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
5049recnd 9947 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
5115nn0cnd 11230 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
52 peano2nn0 11210 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
5315, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℕ0)
5451, 53expcld 12870 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
5551, 54mulcld 9939 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5750, 56mulcld 9939 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5835, 57fsumcl 14311 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5934, 58syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
60 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶))
61 eqidd 2611 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 = 𝑖) → 𝐶 = 𝐶)
62 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
6359adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
6460, 61, 62, 63fvmptd 6197 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑖) = 𝐶)
6522, 3, 33, 59, 64climconst 14122 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0𝐶) ⇝ 𝐶)
6631mptex 6390 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) ∈ V
6728, 66eqeltri 2684 . . . . . . . . . . . . . . 15 𝑆 ∈ V
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
69 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
7069expfac 38724 . . . . . . . . . . . . . . 15 ((𝑀↑(𝑀 + 1)) ∈ ℂ → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
7154, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
72 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7359adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
74 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶)
7574fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7672, 73, 75syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7776, 73eqeltrd 2688 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) ∈ ℂ)
78 ovex 6577 . . . . . . . . . . . . . . . . 17 (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V
7969fvmpt2 6200 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8078, 79mpan2 703 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8180adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8254adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
8382, 72expcld 12870 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝑀↑(𝑀 + 1))↑𝑛) ∈ ℂ)
8472faccld 12933 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℕ)
8584nncnd 10913 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℂ)
8684nnne0d 10942 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ≠ 0)
8783, 85, 86divcld 10680 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ ℂ)
8881, 87eqeltrd 2688 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) ∈ ℂ)
89 ovex 6577 . . . . . . . . . . . . . . . . 17 (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V
9028fvmpt2 6200 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9189, 90mpan2 703 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9291adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9376, 81oveq12d 6567 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9492, 93eqtr4d 2647 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)))
9525, 26, 27, 30, 22, 3, 65, 68, 71, 77, 88, 94climmulf 38671 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ (𝐶 · 0))
9659mul01d 10114 . . . . . . . . . . . . 13 (𝜑 → (𝐶 · 0) = 0)
9795, 96breqtrd 4609 . . . . . . . . . . . 12 (𝜑𝑆 ⇝ 0)
98 eqidd 2611 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝑆𝑛))
9977, 88mulcld 9939 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) ∈ ℂ)
10094, 99eqeltrd 2688 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) ∈ ℂ)
10130, 22, 3, 68, 98, 100clim0cf 38721 . . . . . . . . . . . 12 (𝜑 → (𝑆 ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒))
10297, 101mpbid 221 . . . . . . . . . . 11 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒)
103 breq2 4587 . . . . . . . . . . . . 13 (𝑒 = 1 → ((abs‘(𝑆𝑛)) < 𝑒 ↔ (abs‘(𝑆𝑛)) < 1))
104103rexralbidv 3040 . . . . . . . . . . . 12 (𝑒 = 1 → (∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒 ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1))
105104rspcva 3280 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒) → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
10624, 102, 105sylancr 694 . . . . . . . . . 10 (𝜑 → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
107 rabn0 3912 . . . . . . . . . 10 ({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅ ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
108106, 107sylibr 223 . . . . . . . . 9 (𝜑 → {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅)
109 infssuzcl 11648 . . . . . . . . 9 (({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0) ∧ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅) → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11023, 108, 109sylancr 694 . . . . . . . 8 (𝜑 → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11121, 110syl5eqel 2692 . . . . . . 7 (𝜑𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11220, 111sseldi 3566 . . . . . 6 (𝜑𝐼 ∈ ℤ)
113 tpssi 4309 . . . . . 6 (((abs‘(𝐴‘0)) ∈ ℤ ∧ (!‘𝑀) ∈ ℤ ∧ 𝐼 ∈ ℤ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
11411, 17, 112, 113syl3anc 1318 . . . . 5 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
115 etransclem48.t . . . . . 6 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
116 xrltso 11850 . . . . . . . 8 < Or ℝ*
117116a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
118 tpfi 8121 . . . . . . . 8 {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin
119118a1i 11 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin)
12011tpnzd 4257 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅)
121 zssre 11261 . . . . . . . . 9 ℤ ⊆ ℝ
122 ressxr 9962 . . . . . . . . 9 ℝ ⊆ ℝ*
123121, 122sstri 3577 . . . . . . . 8 ℤ ⊆ ℝ*
124114, 123syl6ss 3580 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
125 fisupcl 8258 . . . . . . 7 (( < Or ℝ* ∧ ({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅ ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)) → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
126117, 119, 120, 124, 125syl13anc 1320 . . . . . 6 (𝜑 → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
127115, 126syl5eqel 2692 . . . . 5 (𝜑𝑇 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
128114, 127sseldd 3569 . . . 4 (𝜑𝑇 ∈ ℤ)
129 0red 9920 . . . . 5 (𝜑 → 0 ∈ ℝ)
13016nnred 10912 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℝ)
131128zred 11358 . . . . 5 (𝜑𝑇 ∈ ℝ)
13216nngt0d 10941 . . . . 5 (𝜑 → 0 < (!‘𝑀))
133 fvex 6113 . . . . . . . 8 (!‘𝑀) ∈ V
134133tpid2 4247 . . . . . . 7 (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
135 supxrub 12026 . . . . . . 7 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
136124, 134, 135sylancl 693 . . . . . 6 (𝜑 → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
137136, 115syl6breqr 4625 . . . . 5 (𝜑 → (!‘𝑀) ≤ 𝑇)
138129, 130, 131, 132, 137ltletrd 10076 . . . 4 (𝜑 → 0 < 𝑇)
139 elnnz 11264 . . . 4 (𝑇 ∈ ℕ ↔ (𝑇 ∈ ℤ ∧ 0 < 𝑇))
140128, 138, 139sylanbrc 695 . . 3 (𝜑𝑇 ∈ ℕ)
141 prmunb 15456 . . 3 (𝑇 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
142140, 141syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
14313ad2ant1 1075 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
144 etransclem48.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
1451443ad2ant1 1075 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑄‘e) = 0)
146 etransclem48.a0 . . . . 5 (𝜑 → (𝐴‘0) ≠ 0)
1471463ad2ant1 1075 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ≠ 0)
148 simp2 1055 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℙ)
1499zcnd 11359 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℂ)
1501493ad2ant1 1075 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ∈ ℂ)
151150abscld 14023 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ∈ ℝ)
1521313ad2ant1 1075 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 ∈ ℝ)
153 prmz 15227 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
154153zred 11358 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
1551543ad2ant2 1076 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℝ)
156124adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
157 fvex 6113 . . . . . . . . 9 (abs‘(𝐴‘0)) ∈ V
158157tpid1 4246 . . . . . . . 8 (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
159 supxrub 12026 . . . . . . . 8 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
160156, 158, 159sylancl 693 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
161160, 115syl6breqr 4625 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ 𝑇)
1621613adant3 1074 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ≤ 𝑇)
163 simp3 1056 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 < 𝑝)
164151, 152, 155, 162, 163lelttrd 10074 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) < 𝑝)
1651303ad2ant1 1075 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ∈ ℝ)
1661373ad2ant1 1075 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ≤ 𝑇)
167165, 152, 155, 166, 163lelttrd 10074 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) < 𝑝)
16828a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))))
16934a1i 11 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))))
170 oveq2 6557 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → ((𝑀↑(𝑀 + 1))↑𝑛) = ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)))
171 fveq2 6103 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (!‘𝑛) = (!‘(𝑝 − 1)))
172170, 171oveq12d 6567 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) = (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))))
173169, 172oveq12d 6567 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
174173adantl 481 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑛 = (𝑝 − 1)) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
175 prmnn 15226 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
176 nnm1nn0 11211 . . . . . . . . . 10 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
177175, 176syl 17 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℕ0)
178177adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
17958adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
18054adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
181180, 178expcld 12870 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℂ)
182177faccld 12933 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℕ)
183182nncnd 10913 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℂ)
184183adantl 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℂ)
185182nnne0d 10942 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ≠ 0)
186185adantl 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ≠ 0)
187181, 184, 186divcld 10680 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℂ)
188179, 187mulcld 9939 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℂ)
189168, 174, 178, 188fvmptd 6197 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
190189eqcomd 2616 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1911903adant3 1074 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1921123ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℤ)
193 1zzd 11285 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 1 ∈ ℤ)
194153, 193zsubcld 11363 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℤ)
1951943ad2ant2 1076 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ ℤ)
196192zred 11358 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℝ)
197 tpid3g 4248 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℤ → 𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
198112, 197syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
199 supxrub 12026 . . . . . . . . . . . . . 14 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → 𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
200124, 198, 199syl2anc 691 . . . . . . . . . . . . 13 (𝜑𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
201200, 115syl6breqr 4625 . . . . . . . . . . . 12 (𝜑𝐼𝑇)
2022013ad2ant1 1075 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼𝑇)
203196, 152, 155, 202, 163lelttrd 10074 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 < 𝑝)
2041533ad2ant2 1076 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℤ)
205 zltlem1 11307 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
206192, 204, 205syl2anc 691 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
207203, 206mpbid 221 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ≤ (𝑝 − 1))
208 eluz2 11569 . . . . . . . . 9 ((𝑝 − 1) ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ (𝑝 − 1) ∈ ℤ ∧ 𝐼 ≤ (𝑝 − 1)))
209192, 195, 207, 208syl3anbrc 1239 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ (ℤ𝐼))
2101113ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
211 fveq2 6103 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (ℤ𝑖) = (ℤ𝐼))
212211raleqdv 3121 . . . . . . . . . . 11 (𝑖 = 𝐼 → (∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
213212elrab 3331 . . . . . . . . . 10 (𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ↔ (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
214210, 213sylib 207 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
215214simprd 478 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1)
216 nfcv 2751 . . . . . . . . . . 11 𝑛abs
217 nfcv 2751 . . . . . . . . . . . 12 𝑛(𝑝 − 1)
21830, 217nffv 6110 . . . . . . . . . . 11 𝑛(𝑆‘(𝑝 − 1))
219216, 218nffv 6110 . . . . . . . . . 10 𝑛(abs‘(𝑆‘(𝑝 − 1)))
220 nfcv 2751 . . . . . . . . . 10 𝑛 <
221 nfcv 2751 . . . . . . . . . 10 𝑛1
222219, 220, 221nfbr 4629 . . . . . . . . 9 𝑛(abs‘(𝑆‘(𝑝 − 1))) < 1
223 fveq2 6103 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (𝑆𝑛) = (𝑆‘(𝑝 − 1)))
224223fveq2d 6107 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (abs‘(𝑆𝑛)) = (abs‘(𝑆‘(𝑝 − 1))))
225224breq1d 4593 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → ((abs‘(𝑆𝑛)) < 1 ↔ (abs‘(𝑆‘(𝑝 − 1))) < 1))
226222, 225rspc 3276 . . . . . . . 8 ((𝑝 − 1) ∈ (ℤ𝐼) → (∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1 → (abs‘(𝑆‘(𝑝 − 1))) < 1))
227209, 215, 226sylc 63 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝑆‘(𝑝 − 1))) < 1)
228172oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
229228adantl 481 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑛 = (𝑝 − 1)) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
230 ovex 6577 . . . . . . . . . . . 12 (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V
231230a1i 11 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V)
232168, 229, 178, 231fvmptd 6197 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
23315nn0red 11229 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
234233, 53reexpcld 12887 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
235233, 234remulcld 9949 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
236235adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
23749, 236remulcld 9949 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23835, 237fsumrecl 14312 . . . . . . . . . . . . 13 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23934, 238syl5eqel 2692 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
240239adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐶 ∈ ℝ)
241234adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℝ)
242241, 178reexpcld 12887 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℝ)
243182nnred 10912 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℝ)
244243adantl 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℝ)
245242, 244, 186redivcld 10732 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℝ)
246240, 245remulcld 9949 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℝ)
247232, 246eqeltrd 2688 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
2482473adant3 1074 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
249 1red 9934 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 1 ∈ ℝ)
250248, 249absltd 14016 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ((abs‘(𝑆‘(𝑝 − 1))) < 1 ↔ (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1)))
251227, 250mpbid 221 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1))
252251simprd 478 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) < 1)
253191, 252eqbrtrd 4605 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) < 1)
254 etransclem6 39133 . . . 4 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑝 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑝)))
255 eqid 2610 . . . 4 Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥)
256 eqid 2610 . . . 4 𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1)))
257143, 145, 4, 147, 12, 148, 164, 167, 253, 254, 255, 256etransclem47 39174 . . 3 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
258257rexlimdv3a 3015 . 2 (𝜑 → (∃𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)))
259142, 258mpd 15 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  {csn 4125  {ctp 4129   class class class wbr 4583   ↦ cmpt 4643   Or wor 4958  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  infcinf 8230  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  (,)cioo 12046  ...cfz 12197  ↑cexp 12722  !cfa 12922  abscabs 13822   ⇝ cli 14063  Σcsu 14264  ∏cprod 14474  eceu 14632  ℙcprime 15223  ∫citg 23193  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437  df-dvn 23438  df-ply 23748  df-coe 23750  df-dgr 23751  df-log 24107  df-cxp 24108 This theorem is referenced by:  etransc  39176
 Copyright terms: Public domain W3C validator