Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > expfac | Structured version Visualization version GIF version |
Description: Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
expfac.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
expfac | ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 11598 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 11266 | . 2 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℤ) | |
3 | expfac.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
4 | nn0ex 11175 | . . . . 5 ⊢ ℕ0 ∈ V | |
5 | 4 | mptex 6390 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ∈ V |
6 | 3, 5 | eqeltri 2684 | . . 3 ⊢ 𝐹 ∈ V |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ V) |
8 | 3 | efcllem 14647 | . 2 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
9 | simpr 476 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0) | |
10 | eftcl 14643 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) | |
11 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0 ∧ ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) → 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) |
12 | oveq2 6557 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴↑𝑛) = (𝐴↑𝑚)) | |
13 | fveq2 6103 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚)) | |
14 | 12, 13 | oveq12d 6567 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑚) / (!‘𝑚))) |
15 | 14 | adantl 481 | . . . . 5 ⊢ (((𝑚 ∈ ℕ0 ∧ ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) ∧ 𝑛 = 𝑚) → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑚) / (!‘𝑚))) |
16 | simpl 472 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0 ∧ ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) → 𝑚 ∈ ℕ0) | |
17 | simpr 476 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0 ∧ ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) → ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) | |
18 | 11, 15, 16, 17 | fvmptd 6197 | . . . 4 ⊢ ((𝑚 ∈ ℕ0 ∧ ((𝐴↑𝑚) / (!‘𝑚)) ∈ ℂ) → (𝐹‘𝑚) = ((𝐴↑𝑚) / (!‘𝑚))) |
19 | 9, 10, 18 | syl2anc 691 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) = ((𝐴↑𝑚) / (!‘𝑚))) |
20 | 19, 10 | eqeltrd 2688 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
21 | 1, 2, 7, 8, 20 | serf0 14259 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 0cc0 9815 / cdiv 10563 ℕ0cn0 11169 ↑cexp 12722 !cfa 12922 ⇝ cli 14063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ico 12052 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-fac 12923 df-hash 12980 df-shft 13655 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 |
This theorem is referenced by: etransclem48 39175 |
Copyright terms: Public domain | W3C validator |