Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climconst Structured version   Visualization version   GIF version

Theorem climconst 14122
 Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1 𝑍 = (ℤ𝑀)
climconst.2 (𝜑𝑀 ∈ ℤ)
climconst.3 (𝜑𝐹𝑉)
climconst.4 (𝜑𝐴 ∈ ℂ)
climconst.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
climconst (𝜑𝐹𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climconst
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 11578 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 climconst.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4syl6eleqr 2699 . . . . 5 (𝜑𝑀𝑍)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑍)
7 climconst.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
87subidd 10259 . . . . . . . . 9 (𝜑 → (𝐴𝐴) = 0)
98fveq2d 6107 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
10 abs0 13873 . . . . . . . 8 (abs‘0) = 0
119, 10syl6eq 2660 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐴)) = 0)
1211adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) = 0)
13 rpgt0 11720 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1413adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
1512, 14eqbrtrd 4605 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) < 𝑥)
1615ralrimivw 2950 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥)
17 fveq2 6103 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
1817, 4syl6eqr 2662 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
1918raleqdv 3121 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥))
2019rspcev 3282 . . . 4 ((𝑀𝑍 ∧ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
216, 16, 20syl2anc 691 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
2221ralrimiva 2949 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
23 climconst.3 . . 3 (𝜑𝐹𝑉)
24 climconst.5 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
257adantr 480 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
264, 1, 23, 24, 7, 25clim2c 14084 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥))
2722, 26mpbird 246 1 (𝜑𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815   < clt 9953   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  abscabs 13822   ⇝ cli 14063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067 This theorem is referenced by:  climconst2  14127  fsumcvg  14290  expcnv  14435  ntrivcvgfvn0  14470  fprodcvg  14499  fprodntriv  14511  faclim2  30887  clim1fr1  38668  climneg  38677  ioodvbdlimc1lem2  38822  ioodvbdlimc2lem  38824  fourierdlem103  39102  fourierdlem104  39103  etransclem48  39175
 Copyright terms: Public domain W3C validator