MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Structured version   Visualization version   GIF version

Theorem expcnv 14435
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . 3 ℕ = (ℤ‘1)
2 1zzd 11285 . . 3 ((𝜑𝐴 = 0) → 1 ∈ ℤ)
3 nn0ex 11175 . . . . 5 0 ∈ V
43mptex 6390 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
54a1i 11 . . 3 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
6 0cnd 9912 . . 3 ((𝜑𝐴 = 0) → 0 ∈ ℂ)
7 nnnn0 11176 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8 oveq2 6557 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
9 eqid 2610 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
10 ovex 6577 . . . . . . 7 (𝐴𝑘) ∈ V
118, 9, 10fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
127, 11syl 17 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
13 simpr 476 . . . . . 6 ((𝜑𝐴 = 0) → 𝐴 = 0)
1413oveq1d 6564 . . . . 5 ((𝜑𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
1512, 14sylan9eqr 2666 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (0↑𝑘))
16 0exp 12757 . . . . 5 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1716adantl 481 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (0↑𝑘) = 0)
1815, 17eqtrd 2644 . . 3 (((𝜑𝐴 = 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = 0)
191, 2, 5, 6, 18climconst 14122 . 2 ((𝜑𝐴 = 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
20 1zzd 11285 . . . 4 ((𝜑𝐴 ≠ 0) → 1 ∈ ℤ)
21 expcnv.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
2221adantr 480 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) < 1)
23 expcnv.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
24 absrpcl 13876 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2523, 24sylan 487 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
2625reclt1d 11761 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
2722, 26mpbid 221 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 1 < (1 / (abs‘𝐴)))
28 1re 9918 . . . . . . . . 9 1 ∈ ℝ
2925rpreccld 11758 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ+)
3029rpred 11748 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (1 / (abs‘𝐴)) ∈ ℝ)
31 difrp 11744 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3228, 30, 31sylancr 694 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
3327, 32mpbid 221 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
3433rpreccld 11758 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
3534rpcnd 11750 . . . . 5 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
36 divcnv 14424 . . . . 5 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
3735, 36syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
38 nnex 10903 . . . . . 6 ℕ ∈ V
3938mptex 6390 . . . . 5 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
4039a1i 11 . . . 4 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
41 oveq2 6557 . . . . . . 7 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
42 eqid 2610 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
43 ovex 6577 . . . . . . 7 ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ V
4441, 42, 43fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4544adantl 481 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
4634rpred 11748 . . . . . 6 ((𝜑𝐴 ≠ 0) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
47 nndivre 10933 . . . . . 6 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4846, 47sylan 487 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
4945, 48eqeltrd 2688 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
50 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
51 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
52 ovex 6577 . . . . . . . 8 ((abs‘𝐴)↑𝑘) ∈ V
5350, 51, 52fvmpt 6191 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
5453adantl 481 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
55 nnz 11276 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
56 rpexpcl 12741 . . . . . . 7 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5725, 55, 56syl2an 493 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
5854, 57eqeltrd 2688 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
5958rpred 11748 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
60 nnrp 11718 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
61 rpmulcl 11731 . . . . . . . 8 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6233, 60, 61syl2an 493 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
6362rpred 11748 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
64 peano2re 10088 . . . . . . . . . 10 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
6563, 64syl 17 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
66 rpexpcl 12741 . . . . . . . . . . 11 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6729, 55, 66syl2an 493 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
6867rpred 11748 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
6963lep1d 10834 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
7030adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
717adantl 481 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
7229rpge0d 11752 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → 0 ≤ (1 / (abs‘𝐴)))
7372adantr 480 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
74 bernneq2 12853 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7570, 71, 73, 74syl3anc 1318 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
7663, 65, 68, 69, 75letrd 10073 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
7725rpcnne0d 11757 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0))
78 exprec 12763 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
79783expa 1257 . . . . . . . . 9 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8077, 55, 79syl2an 493 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
8176, 80breqtrd 4609 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
8262, 57, 81lerec2d 11769 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8333rpcnne0d 11757 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0))
84 nncn 10905 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
85 nnne0 10930 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8684, 85jca 553 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
87 recdiv2 10617 . . . . . . 7 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8883, 86, 87syl2an 493 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
8982, 88breqtrrd 4611 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
9089, 54, 453brtr4d 4615 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
9158rpge0d 11752 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
921, 20, 37, 40, 49, 59, 90, 91climsqz2 14220 . . 3 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
93 1zzd 11285 . . . . 5 (𝜑 → 1 ∈ ℤ)
944a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
9539a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
967adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9796, 11syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
98 expcl 12740 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
9923, 7, 98syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
10097, 99eqeltrd 2688 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
101 absexp 13892 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10223, 7, 101syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
10397fveq2d 6107 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
10453adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
105102, 103, 1043eqtr4rd 2655 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
1061, 93, 94, 95, 100, 105climabs0 14164 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
107106biimpar 501 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10892, 107syldan 486 . 2 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
10919, 108pm2.61dane 2869 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  +crp 11708  cexp 12722  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068
This theorem is referenced by:  explecnv  14436  geolim  14440  geo2lim  14445  iscmet3lem3  22896  mbfi1fseqlem6  23293  geomcau  32725  stoweidlem7  38900
  Copyright terms: Public domain W3C validator