Step | Hyp | Ref
| Expression |
1 | | fprodntriv.2 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
2 | | fprodntriv.1 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 1, 2 | syl6eleq 2698 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | peano2uz 11617 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
6 | 5, 2 | syl6eleqr 2699 |
. 2
⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
7 | | ax-1ne0 9884 |
. . 3
⊢ 1 ≠
0 |
8 | | eqid 2610 |
. . . 4
⊢
(ℤ≥‘(𝑁 + 1)) =
(ℤ≥‘(𝑁 + 1)) |
9 | | eluzelz 11573 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
10 | 9, 2 | eleq2s 2706 |
. . . . . 6
⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
11 | 1, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
12 | 11 | peano2zd 11361 |
. . . 4
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
13 | | seqex 12665 |
. . . . 5
⊢ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ∈ V |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ∈ V) |
15 | | 1cnd 9935 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
16 | | simpr 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑛 ∈
(ℤ≥‘(𝑁 + 1))) |
17 | | fprodntriv.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) |
18 | 17 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁)) |
19 | 11 | ad2antrr 758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ) |
20 | 19 | zred 11358 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ) |
21 | 19 | peano2zd 11361 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ) |
22 | 21 | zred 11358 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ) |
23 | | elfzelz 12213 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ) |
24 | 23 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ) |
25 | 24 | zred 11358 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ) |
26 | 20 | ltp1d 10833 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1)) |
27 | | elfzle1 12215 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚) |
29 | 20, 22, 25, 26, 28 | ltletrd 10076 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚) |
30 | 20, 25 | ltnled 10063 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑁)) |
31 | 29, 30 | mpbid 221 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ≤ 𝑁) |
32 | 31 | intnand 953 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁)) |
33 | 32 | intnand 953 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁))) |
34 | | elfz2 12204 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁))) |
35 | 33, 34 | sylnibr 318 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁)) |
36 | 18, 35 | ssneldd 3571 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ 𝐴) |
37 | 36 | iffalsed 4047 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1) = 1) |
38 | | fzssuz 12253 |
. . . . . . . . . 10
⊢ ((𝑁 + 1)...𝑛) ⊆
(ℤ≥‘(𝑁 + 1)) |
39 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
40 | | uzss 11584 |
. . . . . . . . . . . 12
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) →
(ℤ≥‘(𝑁 + 1)) ⊆
(ℤ≥‘𝑀)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) →
(ℤ≥‘(𝑁 + 1)) ⊆
(ℤ≥‘𝑀)) |
42 | 41, 2 | syl6sseqr 3615 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) →
(ℤ≥‘(𝑁 + 1)) ⊆ 𝑍) |
43 | 38, 42 | syl5ss 3579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1)...𝑛) ⊆ 𝑍) |
44 | 43 | sselda 3568 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ 𝑍) |
45 | | ax-1cn 9873 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
46 | 37, 45 | syl6eqel 2696 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1) ∈ ℂ) |
47 | | nfcv 2751 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑚 |
48 | | nfv 1830 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
49 | | nfcsb1v 3515 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
50 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑘1 |
51 | 48, 49, 50 | nfif 4065 |
. . . . . . . . 9
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1) |
52 | | eleq1 2676 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
53 | | csbeq1a 3508 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
54 | 52, 53 | ifbieq1d 4059 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1)) |
55 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
56 | 47, 51, 54, 55 | fvmptf 6209 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ∧ if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1)) |
57 | 44, 46, 56 | syl2anc 691 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐵, 1)) |
58 | | elfzuz 12209 |
. . . . . . . . 9
⊢ (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) |
59 | 58 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) |
60 | | 1ex 9914 |
. . . . . . . . 9
⊢ 1 ∈
V |
61 | 60 | fvconst2 6374 |
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘(𝑁 + 1)) →
(((ℤ≥‘(𝑁 + 1)) × {1})‘𝑚) = 1) |
62 | 59, 61 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) →
(((ℤ≥‘(𝑁 + 1)) × {1})‘𝑚) = 1) |
63 | 37, 57, 62 | 3eqtr4d 2654 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑚) = (((ℤ≥‘(𝑁 + 1)) × {1})‘𝑚)) |
64 | 16, 63 | seqfveq 12687 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · ,
((ℤ≥‘(𝑁 + 1)) × {1}))‘𝑛)) |
65 | 8 | prodf1 14462 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘(𝑁 + 1)) → (seq(𝑁 + 1)( · ,
((ℤ≥‘(𝑁 + 1)) × {1}))‘𝑛) = 1) |
66 | 65 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · ,
((ℤ≥‘(𝑁 + 1)) × {1}))‘𝑛) = 1) |
67 | 64, 66 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))‘𝑛) = 1) |
68 | 8, 12, 14, 15, 67 | climconst 14122 |
. . 3
⊢ (𝜑 → seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 1) |
69 | | neeq1 2844 |
. . . . 5
⊢ (𝑦 = 1 → (𝑦 ≠ 0 ↔ 1 ≠ 0)) |
70 | | breq2 4587 |
. . . . 5
⊢ (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 1)) |
71 | 69, 70 | anbi12d 743 |
. . . 4
⊢ (𝑦 = 1 → ((𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 1))) |
72 | 60, 71 | spcev 3273 |
. . 3
⊢ ((1 ≠
0 ∧ seq(𝑁 + 1)(
· , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
73 | 7, 68, 72 | sylancr 694 |
. 2
⊢ (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
74 | | seqeq1 12666 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))) |
75 | 74 | breq1d 4593 |
. . . . 5
⊢ (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
76 | 75 | anbi2d 736 |
. . . 4
⊢ (𝑛 = (𝑁 + 1) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
77 | 76 | exbidv 1837 |
. . 3
⊢ (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
78 | 77 | rspcev 3282 |
. 2
⊢ (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
79 | 6, 73, 78 | syl2anc 691 |
1
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |