MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodntriv Structured version   Visualization version   GIF version

Theorem fprodntriv 14511
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1 𝑍 = (ℤ𝑀)
fprodntriv.2 (𝜑𝑁𝑍)
fprodntriv.3 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodntriv (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝑛,𝑦   𝑛,𝑁   𝜑,𝑛   𝑦,𝑛,𝑁   𝑘,𝑍,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑘)   𝑀(𝑦,𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem fprodntriv
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5 (𝜑𝑁𝑍)
2 fprodntriv.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2698 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 peano2uz 11617 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
65, 2syl6eleqr 2699 . 2 (𝜑 → (𝑁 + 1) ∈ 𝑍)
7 ax-1ne0 9884 . . 3 1 ≠ 0
8 eqid 2610 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
9 eluzelz 11573 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109, 2eleq2s 2706 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
111, 10syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
1211peano2zd 11361 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℤ)
13 seqex 12665 . . . . 5 seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V
1413a1i 11 . . . 4 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V)
15 1cnd 9935 . . . 4 (𝜑 → 1 ∈ ℂ)
16 simpr 476 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
17 fprodntriv.3 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝑀...𝑁))
1817ad2antrr 758 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁))
1911ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ)
2019zred 11358 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ)
2119peano2zd 11361 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ)
2221zred 11358 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ)
23 elfzelz 12213 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ)
2423adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ)
2524zred 11358 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ)
2620ltp1d 10833 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1))
27 elfzle1 12215 . . . . . . . . . . . . . . 15 (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚)
2827adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚)
2920, 22, 25, 26, 28ltletrd 10076 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚)
3020, 25ltnled 10063 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3129, 30mpbid 221 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝑁)
3231intnand 953 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀𝑚𝑚𝑁))
3332intnand 953 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
34 elfz2 12204 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
3533, 34sylnibr 318 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁))
3618, 35ssneldd 3571 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝐴)
3736iffalsed 4047 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
38 fzssuz 12253 . . . . . . . . . 10 ((𝑁 + 1)...𝑛) ⊆ (ℤ‘(𝑁 + 1))
395adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ (ℤ𝑀))
40 uzss 11584 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4139, 40syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4241, 2syl6sseqr 3615 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
4338, 42syl5ss 3579 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1)...𝑛) ⊆ 𝑍)
4443sselda 3568 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚𝑍)
45 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
4637, 45syl6eqel 2696 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
47 nfcv 2751 . . . . . . . . 9 𝑘𝑚
48 nfv 1830 . . . . . . . . . 10 𝑘 𝑚𝐴
49 nfcsb1v 3515 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
50 nfcv 2751 . . . . . . . . . 10 𝑘1
5148, 49, 50nfif 4065 . . . . . . . . 9 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
52 eleq1 2676 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
53 csbeq1a 3508 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
5452, 53ifbieq1d 4059 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
55 eqid 2610 . . . . . . . . 9 (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))
5647, 51, 54, 55fvmptf 6209 . . . . . . . 8 ((𝑚𝑍 ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
5744, 46, 56syl2anc 691 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
58 elfzuz 12209 . . . . . . . . 9 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
5958adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
60 1ex 9914 . . . . . . . . 9 1 ∈ V
6160fvconst2 6374 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6259, 61syl 17 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6337, 57, 623eqtr4d 2654 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = (((ℤ‘(𝑁 + 1)) × {1})‘𝑚))
6416, 63seqfveq 12687 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛))
658prodf1 14462 . . . . . 6 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6665adantl 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6764, 66eqtrd 2644 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = 1)
688, 12, 14, 15, 67climconst 14122 . . 3 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)
69 neeq1 2844 . . . . 5 (𝑦 = 1 → (𝑦 ≠ 0 ↔ 1 ≠ 0))
70 breq2 4587 . . . . 5 (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1))
7169, 70anbi12d 743 . . . 4 (𝑦 = 1 → ((𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)))
7260, 71spcev 3273 . . 3 ((1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
737, 68, 72sylancr 694 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
74 seqeq1 12666 . . . . . 6 (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))))
7574breq1d 4593 . . . . 5 (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
7675anbi2d 736 . . . 4 (𝑛 = (𝑁 + 1) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7776exbidv 1837 . . 3 (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7877rspcev 3282 . 2 (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
796, 73, 78syl2anc 691 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  csb 3499  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  fprodss  14517
  Copyright terms: Public domain W3C validator