MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodf1 Structured version   Visualization version   GIF version

Theorem prodf1 14462
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1 (𝑁𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1)

Proof of Theorem prodf1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1t1e1 11052 . . 3 (1 · 1) = 1
21a1i 11 . 2 (𝑁𝑍 → (1 · 1) = 1)
3 prodf1.1 . . . 4 𝑍 = (ℤ𝑀)
43eleq2i 2680 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 205 . 2 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 ax-1cn 9873 . . 3 1 ∈ ℂ
7 elfzuz 12209 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
87, 3syl6eleqr 2699 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
98adantl 481 . . 3 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑍)
10 fvconst2g 6372 . . 3 ((1 ∈ ℂ ∧ 𝑘𝑍) → ((𝑍 × {1})‘𝑘) = 1)
116, 9, 10sylancr 694 . 2 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {1})‘𝑘) = 1)
122, 5, 11seqid3 12707 1 (𝑁𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {csn 4125   × cxp 5036  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   · cmul 9820  cuz 11563  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  prodf1f  14463  fprodntriv  14511  prod1  14513
  Copyright terms: Public domain W3C validator