Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid3 Structured version   Visualization version   GIF version

Theorem seqid3 12707
 Description: A sequence that consists entirely of zeroes (or whatever the identity 𝑍 is for operation +) sums to zero. (Contributed by Mario Carneiro, 15-Dec-2014.)
Hypotheses
Ref Expression
seqid3.1 (𝜑 → (𝑍 + 𝑍) = 𝑍)
seqid3.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqid3.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥   𝑥,𝑍   𝑥,𝑁

Proof of Theorem seqid3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 seqid3.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 seqid3.3 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
3 fvex 6113 . . . . 5 (𝐹𝑥) ∈ V
43elsn 4140 . . . 4 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
52, 4sylibr 223 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑍})
6 seqid3.1 . . . . . 6 (𝜑 → (𝑍 + 𝑍) = 𝑍)
7 ovex 6577 . . . . . . 7 (𝑍 + 𝑍) ∈ V
87elsn 4140 . . . . . 6 ((𝑍 + 𝑍) ∈ {𝑍} ↔ (𝑍 + 𝑍) = 𝑍)
96, 8sylibr 223 . . . . 5 (𝜑 → (𝑍 + 𝑍) ∈ {𝑍})
10 elsni 4142 . . . . . . 7 (𝑥 ∈ {𝑍} → 𝑥 = 𝑍)
11 elsni 4142 . . . . . . 7 (𝑦 ∈ {𝑍} → 𝑦 = 𝑍)
1210, 11oveqan12d 6568 . . . . . 6 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) = (𝑍 + 𝑍))
1312eleq1d 2672 . . . . 5 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑍 + 𝑍) ∈ {𝑍}))
149, 13syl5ibrcom 236 . . . 4 (𝜑 → ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) ∈ {𝑍}))
1514imp 444 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍})) → (𝑥 + 𝑦) ∈ {𝑍})
161, 5, 15seqcl 12683 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍})
17 elsni 4142 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
1816, 17syl 17 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125  ‘cfv 5804  (class class class)co 6549  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664 This theorem is referenced by:  seqid  12708  ser0  12715  prodf1  14462  gsumval2  17103  mulgnn0z  17390  gsumval3  18131  lgsval2lem  24832
 Copyright terms: Public domain W3C validator