Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqid3 | Structured version Visualization version GIF version |
Description: A sequence that consists entirely of zeroes (or whatever the identity 𝑍 is for operation +) sums to zero. (Contributed by Mario Carneiro, 15-Dec-2014.) |
Ref | Expression |
---|---|
seqid3.1 | ⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
seqid3.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqid3.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) |
Ref | Expression |
---|---|
seqid3 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqid3.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | seqid3.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) | |
3 | fvex 6113 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | elsn 4140 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ {𝑍} ↔ (𝐹‘𝑥) = 𝑍) |
5 | 2, 4 | sylibr 223 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ {𝑍}) |
6 | seqid3.1 | . . . . . 6 ⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) | |
7 | ovex 6577 | . . . . . . 7 ⊢ (𝑍 + 𝑍) ∈ V | |
8 | 7 | elsn 4140 | . . . . . 6 ⊢ ((𝑍 + 𝑍) ∈ {𝑍} ↔ (𝑍 + 𝑍) = 𝑍) |
9 | 6, 8 | sylibr 223 | . . . . 5 ⊢ (𝜑 → (𝑍 + 𝑍) ∈ {𝑍}) |
10 | elsni 4142 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑍} → 𝑥 = 𝑍) | |
11 | elsni 4142 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑍} → 𝑦 = 𝑍) | |
12 | 10, 11 | oveqan12d 6568 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) = (𝑍 + 𝑍)) |
13 | 12 | eleq1d 2672 | . . . . 5 ⊢ ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑍 + 𝑍) ∈ {𝑍})) |
14 | 9, 13 | syl5ibrcom 236 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) ∈ {𝑍})) |
15 | 14 | imp 444 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍})) → (𝑥 + 𝑦) ∈ {𝑍}) |
16 | 1, 5, 15 | seqcl 12683 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍}) |
17 | elsni 4142 | . 2 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | |
18 | 16, 17 | syl 17 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {csn 4125 ‘cfv 5804 (class class class)co 6549 ℤ≥cuz 11563 ...cfz 12197 seqcseq 12663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-seq 12664 |
This theorem is referenced by: seqid 12708 ser0 12715 prodf1 14462 gsumval2 17103 mulgnn0z 17390 gsumval3 18131 lgsval2lem 24832 |
Copyright terms: Public domain | W3C validator |