Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod1 Structured version   Visualization version   GIF version

Theorem prod1 14513
 Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prod1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem prod1
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simpr 476 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 ax-1ne0 9884 . . . . 5 1 ≠ 0
43a1i 11 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 1 ≠ 0)
51prodfclim1 14464 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
65adantl 481 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simpl 472 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
8 1ex 9914 . . . . . . 7 1 ∈ V
98fvconst2 6374 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
10 ifid 4075 . . . . . 6 if(𝑘𝐴, 1, 1) = 1
119, 10syl6eqr 2662 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
1211adantl 481 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
13 1cnd 9935 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 1 ∈ ℂ)
141, 2, 4, 6, 7, 12, 13zprodn0 14508 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
15 uzf 11566 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
1615fdmi 5965 . . . . . . . 8 dom ℤ = ℤ
1716eleq2i 2680 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
18 ndmfv 6128 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
1917, 18sylnbir 320 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2019sseq2d 3596 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2120biimpac 502 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
22 ss0 3926 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
23 prodeq1 14478 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
24 prod0 14512 . . . . 5 𝑘 ∈ ∅ 1 = 1
2523, 24syl6eq 2660 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
2621, 22, 253syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
2714, 26pm2.61dan 828 . 2 (𝐴 ⊆ (ℤ𝑀) → ∏𝑘𝐴 1 = 1)
28 fz1f1o 14288 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
29 eqidd 2611 . . . . . . . . 9 (𝑘 = (𝑓𝑗) → 1 = 1)
30 simpl 472 . . . . . . . . 9 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (#‘𝐴) ∈ ℕ)
31 simpr 476 . . . . . . . . 9 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
32 1cnd 9935 . . . . . . . . 9 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
33 elfznn 12241 . . . . . . . . . . 11 (𝑗 ∈ (1...(#‘𝐴)) → 𝑗 ∈ ℕ)
348fvconst2 6374 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3533, 34syl 17 . . . . . . . . . 10 (𝑗 ∈ (1...(#‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3635adantl 481 . . . . . . . . 9 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(#‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3729, 30, 31, 32, 36fprod 14510 . . . . . . . 8 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(#‘𝐴)))
38 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
3938prodf1 14462 . . . . . . . . 9 ((#‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(#‘𝐴)) = 1)
4039adantr 480 . . . . . . . 8 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(#‘𝐴)) = 1)
4137, 40eqtrd 2644 . . . . . . 7 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4241ex 449 . . . . . 6 ((#‘𝐴) ∈ ℕ → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4342exlimdv 1848 . . . . 5 ((#‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4443imp 444 . . . 4 (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4525, 44jaoi 393 . . 3 ((𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
4628, 45syl 17 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
4727, 46jaoi 393 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   × cxp 5036  dom cdm 5038  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   · cmul 9820  ℕcn 10897  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979   ⇝ cli 14063  ∏cprod 14474 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475 This theorem is referenced by:  etransclem35  39162
 Copyright terms: Public domain W3C validator