Step | Hyp | Ref
| Expression |
1 | | nnuz 11599 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 11285 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | nnex 10903 |
. . . . . 6
⊢ ℕ
∈ V |
4 | 3 | mptex 6390 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ 1)
∈ V |
5 | 4 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈
V) |
6 | | 1cnd 9935 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
7 | | eqidd 2611 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) =
(𝑛 ∈ ℕ ↦
1)) |
8 | | eqidd 2611 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1) |
9 | | id 22 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
10 | | 1cnd 9935 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
11 | 7, 8, 9, 10 | fvmptd 6197 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
1)‘𝑘) =
1) |
12 | 11 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1) |
13 | 1, 2, 5, 6, 12 | climconst 14122 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝
1) |
14 | | clim1fr1.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) |
15 | 3 | mptex 6390 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V |
16 | 14, 15 | eqeltri 2684 |
. . . 4
⊢ 𝐹 ∈ V |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
18 | | clim1fr1.4 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℂ) |
20 | | clim1fr1.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
21 | 20 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℂ) |
22 | | nncn 10905 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
23 | 22 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
24 | | clim1fr1.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ 0) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) |
26 | | nnne0 10930 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
27 | 26 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
28 | 19, 21, 23, 25, 27 | divdiv1d 10711 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛))) |
29 | 28 | mpteq2dva 4672 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))) |
30 | 18, 20, 24 | divcld 10680 |
. . . . 5
⊢ (𝜑 → (𝐵 / 𝐴) ∈ ℂ) |
31 | | divcnv 14424 |
. . . . 5
⊢ ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0) |
33 | 29, 32 | eqbrtrrd 4607 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0) |
34 | | eqid 2610 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ 1) =
(𝑛 ∈ ℕ ↦
1) |
35 | | 1cnd 9935 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
36 | 34, 35 | fmpti 6291 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
1):ℕ⟶ℂ |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
1):ℕ⟶ℂ) |
38 | 37 | ffvelrnda 6267 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈
ℂ) |
39 | 21, 23 | mulcld 9939 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ) |
40 | 21, 23, 25, 27 | mulne0d 10558 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0) |
41 | 19, 39, 40 | divcld 10680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ) |
42 | | eqid 2610 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) |
43 | 41, 42 | fmptd 6292 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ) |
44 | 43 | ffvelrnda 6267 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ) |
45 | 14 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))) |
46 | | oveq2 6557 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘)) |
47 | 46 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵)) |
48 | 47, 46 | oveq12d 6567 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘))) |
49 | 48 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘))) |
50 | | simpr 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
51 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
52 | 50 | nncnd 10913 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
53 | 51, 52 | mulcld 9939 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ) |
54 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
55 | 53, 54 | addcld 9938 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ) |
56 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ≠ 0) |
57 | 50 | nnne0d 10942 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0) |
58 | 51, 52, 56, 57 | mulne0d 10558 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0) |
59 | 55, 53, 58 | divcld 10680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ) |
60 | 45, 49, 50, 59 | fvmptd 6197 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘))) |
61 | 53, 54, 53, 58 | divdird 10718 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘)))) |
62 | 53, 58 | dividd 10678 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1) |
63 | 62 | oveq1d 6564 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘)))) |
64 | 61, 63 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘)))) |
65 | 12 | eqcomd 2616 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦
1)‘𝑘)) |
66 | | eqidd 2611 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))) |
67 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘) |
68 | 67 | oveq2d 6565 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘)) |
69 | 68 | oveq2d 6565 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘))) |
70 | 54, 53, 58 | divcld 10680 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ) |
71 | 66, 69, 50, 70 | fvmptd 6197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘))) |
72 | 71 | eqcomd 2616 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)) |
73 | 65, 72 | oveq12d 6567 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))) |
74 | 60, 64, 73 | 3eqtrd 2648 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))) |
75 | 1, 2, 13, 17, 33, 38, 44, 74 | climadd 14210 |
. 2
⊢ (𝜑 → 𝐹 ⇝ (1 + 0)) |
76 | | 1p0e1 11010 |
. 2
⊢ (1 + 0) =
1 |
77 | 75, 76 | syl6breq 4624 |
1
⊢ (𝜑 → 𝐹 ⇝ 1) |