MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcvg Structured version   Visualization version   GIF version

Theorem fprodcvg 14499
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fprodcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodcvg (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcvg
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . 2 (ℤ𝑁) = (ℤ𝑁)
2 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 11573 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 17 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 12665 . . 3 seq𝑀( · , 𝐹) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
7 eqid 2610 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 11568 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 11573 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 4042 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
1312adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
14 prodmo.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1514adantlr 747 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1613, 15eqeltrd 2688 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1716ex 449 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
18 iffalse 4045 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
19 ax-1cn 9873 . . . . . . . 8 1 ∈ ℂ
2018, 19syl6eqel 2696 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
2117, 20pm2.61d1 170 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
22 prodmo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2322fvmpt2 6200 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2411, 21, 23syl2anc 691 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2524, 21eqeltrd 2688 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
267, 9, 25prodf 14458 . . 3 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
2726, 2ffvelrnd 6268 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
28 mulid1 9916 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
2928adantl 481 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
302adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
31 simpr 476 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
329adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
3325adantlr 747 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
347, 32, 33prodf 14458 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3534, 30ffvelrnd 6268 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
36 elfzuz 12209 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
37 eluzelz 11573 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3837adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
39 fprodcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4039sseld 3567 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
41 fznuz 12291 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4240, 41syl6 34 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4342con2d 128 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4443imp 444 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4538, 44eldifd 3551 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
46 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4746eqeq1d 2612 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 1 ↔ (𝐹𝑚) = 1))
48 eldifi 3694 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
49 eldifn 3695 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
5049, 18syl 17 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
5150, 19syl6eqel 2696 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
5248, 51, 23syl2anc 691 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
5352, 50eqtrd 2644 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
5447, 53vtoclga 3245 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 1)
5545, 54syl 17 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 1)
5636, 55sylan2 490 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5756adantlr 747 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5829, 30, 31, 35, 57seqid2 12709 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) = (seq𝑀( · , 𝐹)‘𝑛))
5958eqcomd 2616 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) = (seq𝑀( · , 𝐹)‘𝑁))
601, 4, 6, 27, 59climconst 14122 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  prodmolem2a  14503
  Copyright terms: Public domain W3C validator