Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransc Structured version   Visualization version   GIF version

Theorem etransc 39176
 Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 28-Sep-2020.)
Assertion
Ref Expression
etransc e ∈ (ℂ ∖ 𝔸)

Proof of Theorem etransc
Dummy variables 𝑖 𝑙 𝑛 𝑞 𝑘 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9934 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → 1 ∈ ℝ)
2 nn0abscl 13900 . . . . . . 7 (𝑘 ∈ ℤ → (abs‘𝑘) ∈ ℕ0)
32nn0red 11229 . . . . . 6 (𝑘 ∈ ℤ → (abs‘𝑘) ∈ ℝ)
43adantr 480 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → (abs‘𝑘) ∈ ℝ)
5 nnabscl 13913 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → (abs‘𝑘) ∈ ℕ)
65nnge1d 10940 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → 1 ≤ (abs‘𝑘))
71, 4, 6lensymd 10067 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → ¬ (abs‘𝑘) < 1)
8 nan 602 . . . 4 ((𝑘 ∈ ℤ → ¬ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → ¬ (abs‘𝑘) < 1))
97, 8mpbir 220 . . 3 (𝑘 ∈ ℤ → ¬ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
109nrex 2983 . 2 ¬ ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)
11 ere 14658 . . . . . . . 8 e ∈ ℝ
1211recni 9931 . . . . . . 7 e ∈ ℂ
13 neldif 3697 . . . . . . 7 ((e ∈ ℂ ∧ ¬ e ∈ (ℂ ∖ 𝔸)) → e ∈ 𝔸)
1412, 13mpan 702 . . . . . 6 (¬ e ∈ (ℂ ∖ 𝔸) → e ∈ 𝔸)
15 ene0 14776 . . . . . . . 8 e ≠ 0
16 elsng 4139 . . . . . . . . 9 (e ∈ ℂ → (e ∈ {0} ↔ e = 0))
1712, 16ax-mp 5 . . . . . . . 8 (e ∈ {0} ↔ e = 0)
1815, 17nemtbir 2877 . . . . . . 7 ¬ e ∈ {0}
1918a1i 11 . . . . . 6 (¬ e ∈ (ℂ ∖ 𝔸) → ¬ e ∈ {0})
2014, 19eldifd 3551 . . . . 5 (¬ e ∈ (ℂ ∖ 𝔸) → e ∈ (𝔸 ∖ {0}))
21 elaa2 39127 . . . . 5 (e ∈ (𝔸 ∖ {0}) ↔ (e ∈ ℂ ∧ ∃𝑞 ∈ (Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)))
2220, 21sylib 207 . . . 4 (¬ e ∈ (ℂ ∖ 𝔸) → (e ∈ ℂ ∧ ∃𝑞 ∈ (Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)))
2322simprd 478 . . 3 (¬ e ∈ (ℂ ∖ 𝔸) → ∃𝑞 ∈ (Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0))
24 simpl 472 . . . . . . 7 ((𝑞 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ∈ (Poly‘ℤ))
25 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
26 n0p 38234 . . . . . . . . 9 ((𝑞 ∈ (Poly‘ℤ) ∧ 0 ∈ ℕ0 ∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ≠ 0𝑝)
2725, 26mp3an2 1404 . . . . . . . 8 ((𝑞 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ≠ 0𝑝)
28 nelsn 4159 . . . . . . . 8 (𝑞 ≠ 0𝑝 → ¬ 𝑞 ∈ {0𝑝})
2927, 28syl 17 . . . . . . 7 ((𝑞 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑞)‘0) ≠ 0) → ¬ 𝑞 ∈ {0𝑝})
3024, 29eldifd 3551 . . . . . 6 ((𝑞 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
3130adantrr 749 . . . . 5 ((𝑞 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → 𝑞 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
32 simprr 792 . . . . 5 ((𝑞 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → (𝑞‘e) = 0)
33 eqid 2610 . . . . 5 (coeff‘𝑞) = (coeff‘𝑞)
34 simprl 790 . . . . 5 ((𝑞 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → ((coeff‘𝑞)‘0) ≠ 0)
35 eqid 2610 . . . . 5 (deg‘𝑞) = (deg‘𝑞)
36 eqid 2610 . . . . 5 Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1))))
37 eqid 2610 . . . . 5 (𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))
38 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 → ((coeff‘𝑞)‘) = ((coeff‘𝑞)‘𝑙))
39 oveq2 6557 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 → (e↑𝑐) = (e↑𝑐𝑙))
4038, 39oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 ( = 𝑙 → (((coeff‘𝑞)‘) · (e↑𝑐)) = (((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙)))
4140fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ( = 𝑙 → (abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) = (abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))))
4241oveq1d 6564 . . . . . . . . . . . . . . . . 17 ( = 𝑙 → ((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = ((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))))
4342cbvsumv 14274 . . . . . . . . . . . . . . . 16 Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1))))
4443a1i 11 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))))
45 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) = (((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛))
46 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (!‘𝑚) = (!‘𝑛))
4745, 46oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)) = ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))
4844, 47oveq12d 6567 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))) = (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))
4948cbvmptv 4678 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)))) = (𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))
5049a1i 11 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)))) = (𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))))
51 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
5250, 51fveq12d 6109 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚) = ((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛))
5352fveq2d 6107 . . . . . . . . . 10 (𝑚 = 𝑛 → (abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) = (abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)))
5453breq1d 4593 . . . . . . . . 9 (𝑚 = 𝑛 → ((abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ (abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1))
5554cbvralv 3147 . . . . . . . 8 (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1)
56 fveq2 6103 . . . . . . . . 9 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
5756raleqdv 3121 . . . . . . . 8 (𝑗 = 𝑖 → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝑖)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1))
5855, 57syl5bb 271 . . . . . . 7 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ ∀𝑛 ∈ (ℤ𝑖)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1))
5958cbvrabv 3172 . . . . . 6 {𝑗 ∈ ℕ0 ∣ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1} = {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1}
6059infeq1i 8267 . . . . 5 inf({𝑗 ∈ ℕ0 ∣ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < ) = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘((𝑛 ∈ ℕ0 ↦ (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1}, ℝ, < )
61 eqid 2610 . . . . 5 sup({(abs‘((coeff‘𝑞)‘0)), (!‘(deg‘𝑞)), inf({𝑗 ∈ ℕ0 ∣ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < )}, ℝ*, < ) = sup({(abs‘((coeff‘𝑞)‘0)), (!‘(deg‘𝑞)), inf({𝑗 ∈ ℕ0 ∣ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝑚 ∈ ℕ0 ↦ (Σ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘) · (e↑𝑐))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) · ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < )}, ℝ*, < )
6231, 32, 33, 34, 35, 36, 37, 60, 61etransclem48 39175 . . . 4 ((𝑞 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
6362rexlimiva 3010 . . 3 (∃𝑞 ∈ (Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
6423, 63syl 17 . 2 (¬ e ∈ (ℂ ∖ 𝔸) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
6510, 64mt3 191 1 e ∈ (ℂ ∖ 𝔸)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ∖ cdif 3537  {csn 4125  {ctp 4129   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  supcsup 8229  infcinf 8230  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   / cdiv 10563  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  !cfa 12922  abscabs 13822  Σcsu 14264  eceu 14632  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747  𝔸caa 23873  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437  df-dvn 23438  df-ply 23748  df-coe 23750  df-dgr 23751  df-aa 23874  df-log 24107  df-cxp 24108 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator