Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmulf Structured version   Visualization version   GIF version

Theorem climmulf 38671
Description: A version of climmul 14211 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climmulf.1 𝑘𝜑
climmulf.2 𝑘𝐹
climmulf.3 𝑘𝐺
climmulf.4 𝑘𝐻
climmulf.5 𝑍 = (ℤ𝑀)
climmulf.6 (𝜑𝑀 ∈ ℤ)
climmulf.7 (𝜑𝐹𝐴)
climmulf.8 (𝜑𝐻𝑋)
climmulf.9 (𝜑𝐺𝐵)
climmulf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climmulf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
climmulf (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climmulf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmulf.5 . 2 𝑍 = (ℤ𝑀)
2 climmulf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climmulf.7 . 2 (𝜑𝐹𝐴)
4 climmulf.8 . 2 (𝜑𝐻𝑋)
5 climmulf.9 . 2 (𝜑𝐺𝐵)
6 climmulf.1 . . . . 5 𝑘𝜑
7 nfcv 2751 . . . . . 6 𝑘𝑗
87nfel1 2765 . . . . 5 𝑘 𝑗𝑍
96, 8nfan 1816 . . . 4 𝑘(𝜑𝑗𝑍)
10 climmulf.2 . . . . . 6 𝑘𝐹
1110, 7nffv 6110 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2765 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
139, 12nfim 1813 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1 2676 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 736 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6103 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2672 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climmulf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvar 2250 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climmulf.3 . . . . . 6 𝑘𝐺
2221, 7nffv 6110 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2765 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
249, 23nfim 1813 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6103 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2672 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climmulf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvar 2250 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climmulf.4 . . . . . 6 𝑘𝐻
3130, 7nffv 6110 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2751 . . . . . 6 𝑘 ·
3311, 32, 22nfov 6575 . . . . 5 𝑘((𝐹𝑗) · (𝐺𝑗))
3431, 33nfeq 2762 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))
359, 34nfim 1813 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
36 fveq2 6103 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 6567 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐹𝑗) · (𝐺𝑗)))
3836, 37eqeq12d 2625 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))))
3915, 38imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))))
40 climmulf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4135, 39, 40chvar 2250 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climmul 14211 1 (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813   · cmul 9820  cz 11254  cuz 11563  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  climneg  38677  climdivf  38679  stirlinglem15  38981  etransclem48  39175
  Copyright terms: Public domain W3C validator