Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem83 Structured version   Visualization version   GIF version

Theorem fourierdlem83 39082
Description: The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem83.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem83.c 𝐶 = (-π(,)π)
fourierdlem83.fl1 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem83.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem83.x (𝜑𝑋 ∈ ℝ)
fourierdlem83.s 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
fourierdlem83.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem83.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem83 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚   𝑥,𝐶,𝑛,𝑠   𝑥,𝐷,𝑠   𝑛,𝐹,𝑥   𝑥,𝑁   𝑚,𝑁,𝑛   𝑁,𝑠   𝑥,𝑋   𝑚,𝑋,𝑛   𝑋,𝑠   𝜑,𝑥,𝑛   𝜑,𝑚   𝜑,𝑠
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑛,𝑠)   𝐶(𝑚)   𝐷(𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛,𝑠)   𝐹(𝑚,𝑠)

Proof of Theorem fourierdlem83
Dummy variables 𝑏 𝑐 𝑦 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem83.s . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
21a1i 11 . . 3 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))))
3 oveq2 6557 . . . . . 6 (𝑚 = 𝑁 → (1...𝑚) = (1...𝑁))
43sumeq1d 14279 . . . . 5 (𝑚 = 𝑁 → Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
54oveq2d 6565 . . . 4 (𝑚 = 𝑁 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
65adantl 481 . . 3 ((𝜑𝑚 = 𝑁) → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
7 fourierdlem83.n . . 3 (𝜑𝑁 ∈ ℕ)
8 id 22 . . . . . 6 (𝜑𝜑)
9 0nn0 11184 . . . . . . 7 0 ∈ ℕ0
109a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
119elexi 3186 . . . . . . 7 0 ∈ V
12 eleq1 2676 . . . . . . . . 9 (𝑛 = 0 → (𝑛 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1312anbi2d 736 . . . . . . . 8 (𝑛 = 0 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑 ∧ 0 ∈ ℕ0)))
14 fveq2 6103 . . . . . . . . 9 (𝑛 = 0 → (𝐴𝑛) = (𝐴‘0))
1514eleq1d 2672 . . . . . . . 8 (𝑛 = 0 → ((𝐴𝑛) ∈ ℝ ↔ (𝐴‘0) ∈ ℝ))
1613, 15imbi12d 333 . . . . . . 7 (𝑛 = 0 → (((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ) ↔ ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)))
17 fourierdlem83.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
18 fourierdlem83.c . . . . . . . . . 10 𝐶 = (-π(,)π)
19 fourierdlem83.fl1 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
20 fourierdlem83.a . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
21 fourierdlem83.b . . . . . . . . . 10 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2217, 18, 19, 20, 21fourierdlem22 39022 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
2322simpld 474 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
2423imp 444 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
2511, 16, 24vtocl 3232 . . . . . 6 ((𝜑 ∧ 0 ∈ ℕ0) → (𝐴‘0) ∈ ℝ)
268, 10, 25syl2anc 691 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℝ)
2726rehalfcld 11156 . . . 4 (𝜑 → ((𝐴‘0) / 2) ∈ ℝ)
28 fzfid 12634 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
29 eleq1 2676 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ0𝑛 ∈ ℕ0))
3029anbi2d 736 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ0) ↔ (𝜑𝑛 ∈ ℕ0)))
31 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑛𝑥𝐶) → 𝑘 = 𝑛)
3231oveq1d 6564 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑛𝑥𝐶) → (𝑘 · 𝑥) = (𝑛 · 𝑥))
3332fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑛𝑥𝐶) → (cos‘(𝑘 · 𝑥)) = (cos‘(𝑛 · 𝑥)))
3433oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
3534itgeq2dv 23354 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥)
3635eleq1d 2672 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
3730, 36imbi12d 333 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
3817adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐹:ℝ⟶ℝ)
3919adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝐶) ∈ 𝐿1)
40 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
4138, 18, 39, 20, 40fourierdlem16 39016 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
4241simprd 478 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
4337, 42chvarv 2251 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
44 pire 24014 . . . . . . . . . . . 12 π ∈ ℝ
4544a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
46 0re 9919 . . . . . . . . . . . . 13 0 ∈ ℝ
47 pipos 24016 . . . . . . . . . . . . 13 0 < π
4846, 47gtneii 10028 . . . . . . . . . . . 12 π ≠ 0
4948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
5043, 45, 49redivcld 10732 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
5150, 20fmptd 6292 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℝ)
5251adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐴:ℕ0⟶ℝ)
53 elfznn 12241 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
5453nnnn0d 11228 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ0)
5554adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ0)
5652, 55ffvelrnd 6268 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) ∈ ℝ)
5755nn0red 11229 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
58 fourierdlem83.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
5958adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℝ)
6057, 59remulcld 9949 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 · 𝑋) ∈ ℝ)
6160recoscld 14713 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
6256, 61remulcld 9949 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
63 eleq1 2676 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ))
6463anbi2d 736 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑛 ∈ ℕ)))
65 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑘 · 𝑥) = (𝑛 · 𝑥))
6665fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑛 · 𝑥)))
6766oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6867adantr 480 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑛𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
6968itgeq2dv 23354 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥)
7069eleq1d 2672 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ))
7164, 70imbi12d 333 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)))
7217adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
7319adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝐶) ∈ 𝐿1)
74 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7572, 18, 73, 21, 74fourierdlem21 39021 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (((𝐵𝑘) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑘 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ))
7675simprd 478 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 ∈ ℝ)
7771, 76chvarv 2251 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
7844a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
7948a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8077, 78, 79redivcld 10732 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
8180, 21fmptd 6292 . . . . . . . . 9 (𝜑𝐵:ℕ⟶ℝ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐵:ℕ⟶ℝ)
8353adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
8482, 83ffvelrnd 6268 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) ∈ ℝ)
8560resincld 14712 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
8684, 85remulcld 9949 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
8762, 86readdcld 9948 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8828, 87fsumrecl 14312 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
8927, 88readdcld 9948 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) ∈ ℝ)
902, 6, 7, 89fvmptd 6197 . 2 (𝜑 → (𝑆𝑁) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
9120a1i 11 . . . . . . 7 (𝜑𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
92 oveq1 6556 . . . . . . . . . . . . 13 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
9392fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 0 → (cos‘(𝑛 · 𝑥)) = (cos‘(0 · 𝑥)))
9493oveq2d 6565 . . . . . . . . . . 11 (𝑛 = 0 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9594adantr 480 . . . . . . . . . 10 ((𝑛 = 0 ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(0 · 𝑥))))
9695itgeq2dv 23354 . . . . . . . . 9 (𝑛 = 0 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9796adantl 481 . . . . . . . 8 ((𝜑𝑛 = 0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥)
9897oveq1d 6564 . . . . . . 7 ((𝜑𝑛 = 0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
9917, 18, 19, 20, 10fourierdlem16 39016 . . . . . . . . 9 (𝜑 → (((𝐴‘0) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ))
10099simprd 478 . . . . . . . 8 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 ∈ ℝ)
10144a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℝ)
10248a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
103100, 101, 102redivcld 10732 . . . . . . 7 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) ∈ ℝ)
10491, 98, 10, 103fvmptd 6197 . . . . . 6 (𝜑 → (𝐴‘0) = (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π))
105 ioosscn 38563 . . . . . . . . . . . . . . 15 (-π(,)π) ⊆ ℂ
106 id 22 . . . . . . . . . . . . . . . 16 (𝑥𝐶𝑥𝐶)
107106, 18syl6eleq 2698 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑥 ∈ (-π(,)π))
108105, 107sseldi 3566 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥 ∈ ℂ)
109108mul02d 10113 . . . . . . . . . . . . 13 (𝑥𝐶 → (0 · 𝑥) = 0)
110109fveq2d 6107 . . . . . . . . . . . 12 (𝑥𝐶 → (cos‘(0 · 𝑥)) = (cos‘0))
111 cos0 14719 . . . . . . . . . . . 12 (cos‘0) = 1
112110, 111syl6eq 2660 . . . . . . . . . . 11 (𝑥𝐶 → (cos‘(0 · 𝑥)) = 1)
113112oveq2d 6565 . . . . . . . . . 10 (𝑥𝐶 → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
114113adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = ((𝐹𝑥) · 1))
11517adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
116 ioossre 12106 . . . . . . . . . . . . . 14 (-π(,)π) ⊆ ℝ
117116, 107sseldi 3566 . . . . . . . . . . . . 13 (𝑥𝐶𝑥 ∈ ℝ)
118117adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
119115, 118ffvelrnd 6268 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
120119recnd 9947 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
121120mulid1d 9936 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · 1) = (𝐹𝑥))
122114, 121eqtrd 2644 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (cos‘(0 · 𝑥))) = (𝐹𝑥))
123122itgeq2dv 23354 . . . . . . 7 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 = ∫𝐶(𝐹𝑥) d𝑥)
124123oveq1d 6564 . . . . . 6 (𝜑 → (∫𝐶((𝐹𝑥) · (cos‘(0 · 𝑥))) d𝑥 / π) = (∫𝐶(𝐹𝑥) d𝑥 / π))
125104, 124eqtrd 2644 . . . . 5 (𝜑 → (𝐴‘0) = (∫𝐶(𝐹𝑥) d𝑥 / π))
126125oveq1d 6564 . . . 4 (𝜑 → ((𝐴‘0) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2))
12717feqmptd 6159 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
128127reseq1d 5316 . . . . . . . 8 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
12944a1i 11 . . . . . . . . . . . 12 (𝑥𝐶 → π ∈ ℝ)
130129renegcld 10336 . . . . . . . . . . 11 (𝑥𝐶 → -π ∈ ℝ)
131 ioossicc 12130 . . . . . . . . . . . . 13 (-π(,)π) ⊆ (-π[,]π)
13218, 131eqsstri 3598 . . . . . . . . . . . 12 𝐶 ⊆ (-π[,]π)
133132sseli 3564 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π[,]π))
134 eliccre 38575 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
135130, 129, 133, 134syl3anc 1318 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
136135ssriv 3572 . . . . . . . . 9 𝐶 ⊆ ℝ
137 resmpt 5369 . . . . . . . . 9 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
138136, 137mp1i 13 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
139128, 138eqtr2d 2645 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
140139, 19eqeltrd 2688 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
141119, 140itgcl 23356 . . . . 5 (𝜑 → ∫𝐶(𝐹𝑥) d𝑥 ∈ ℂ)
142101recnd 9947 . . . . 5 (𝜑 → π ∈ ℂ)
143 2cnd 10970 . . . . 5 (𝜑 → 2 ∈ ℂ)
144 2ne0 10990 . . . . . 6 2 ≠ 0
145144a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
146141, 142, 143, 102, 145divdiv32d 10705 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / π) / 2) = ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π))
147141, 143, 145divrecd 10683 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)))
148143, 145reccld 10673 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
149141, 148mulcomd 9940 . . . . . 6 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 · (1 / 2)) = ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥))
150148, 119, 140itgmulc2 23406 . . . . . 6 (𝜑 → ((1 / 2) · ∫𝐶(𝐹𝑥) d𝑥) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
151147, 149, 1503eqtrd 2648 . . . . 5 (𝜑 → (∫𝐶(𝐹𝑥) d𝑥 / 2) = ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥)
152151oveq1d 6564 . . . 4 (𝜑 → ((∫𝐶(𝐹𝑥) d𝑥 / 2) / π) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
153126, 146, 1523eqtrd 2648 . . 3 (𝜑 → ((𝐴‘0) / 2) = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π))
15455, 50syldan 486 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
15520fvmpt2 6200 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
15655, 154, 155syl2anc 691 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐴𝑛) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
157156oveq1d 6564 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))))
158154recnd 9947 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
15961recnd 9947 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
160158, 159mulcomd 9940 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) · (cos‘(𝑛 · 𝑋))) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16155, 43syldan 486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
162161recnd 9947 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
163142adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ∈ ℂ)
16448a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → π ≠ 0)
165159, 162, 163, 164divassd 10715 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)))
16617ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝐹:ℝ⟶ℝ)
167117adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
168166, 167ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
169 nn0re 11178 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
170169ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
171170, 167remulcld 9949 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
172171recoscld 14713 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
173168, 172remulcld 9949 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
17454, 173sylanl2 681 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
175 ioombl 23140 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) ∈ dom vol
17618, 175eqeltri 2684 . . . . . . . . . . . . . . . . . 18 𝐶 ∈ dom vol
177176elexi 3186 . . . . . . . . . . . . . . . . 17 𝐶 ∈ V
178177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ V)
179 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
180 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
181178, 172, 168, 179, 180offval2 6812 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
182172recnd 9947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
183120adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
184182, 183mulcomd 9940 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
185184mpteq2dva 4672 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
186181, 185eqtr2d 2645 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
187 coscn 24003 . . . . . . . . . . . . . . . . . 18 cos ∈ (ℂ–cn→ℂ)
188187a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → cos ∈ (ℂ–cn→ℂ))
189 ax-resscn 9872 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
190136, 189sstri 3577 . . . . . . . . . . . . . . . . . . . 20 𝐶 ⊆ ℂ
191190a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ⊆ ℂ)
192169recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
193192adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
194 ssid 3587 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
195194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → ℂ ⊆ ℂ)
196191, 193, 195constcncfg 38756 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
197191, 195idcncfg 38757 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
198196, 197mulcncf 23023 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
199188, 198cncfmpt1f 22524 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
200 cnmbf 23232 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
201176, 199, 200sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
202140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
203 1re 9918 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
204 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
205169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
206117adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
207205, 206remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
208207recoscld 14713 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
209208ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ0 → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
211 dmmptg 5549 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
213204, 212eleqtrd 2690 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
214 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
215 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
216215fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
218 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
219169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
220136, 218sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
221219, 220remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
222221recoscld 14713 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
223214, 217, 218, 222fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
224223fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
225 abscosbd 38431 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
226221, 225syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
227224, 226eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
228213, 227syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
229228ralrimiva 2949 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
230 breq2 4587 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
231230ralbidv 2969 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
232231rspcev 3282 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
233203, 229, 232sylancr 694 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
234233adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
235 bddmulibl 23411 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
236201, 202, 234, 235syl3anc 1318 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
237186, 236eqeltrd 2688 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
23855, 237syldan 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
239159, 174, 238itgmulc2 23406 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥)
240159adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
241120adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
24254, 182sylanl2 681 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
243240, 241, 242mul12d 10124 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))))
244240, 242mulcomd 9940 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥))) = ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))
245244oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑋)) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
246243, 245eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))))
247246itgeq2dv 23354 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
248239, 247eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥)
249248oveq1d 6564 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((cos‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
250165, 249eqtr3d 2646 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((cos‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
251157, 160, 2503eqtrd 2648 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π))
25283, 80syldan 486 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
25321fvmpt2 6200 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
25483, 252, 253syl2anc 691 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐵𝑛) = (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
255254oveq1d 6564 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))))
256252recnd 9947 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℂ)
25785recnd 9947 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
258256, 257mulcomd 9940 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) · (sin‘(𝑛 · 𝑋))) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
25983, 77syldan 486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
260259recnd 9947 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℂ)
261257, 260, 163, 164divassd 10715 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)))
262119adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
263 nnre 10904 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
264263adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
265117adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
266264, 265remulcld 9949 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
267266resincld 14712 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
268267adantll 746 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
269262, 268remulcld 9949 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
27053, 269sylanl2 681 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
271177a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ V)
272 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
273 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
274271, 268, 262, 272, 273offval2 6812 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
275268recnd 9947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
276120adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
277275, 276mulcomd 9940 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
278277mpteq2dva 4672 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
279274, 278eqtr2d 2645 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
280 sincn 24002 . . . . . . . . . . . . . . . . . 18 sin ∈ (ℂ–cn→ℂ)
281280a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → sin ∈ (ℂ–cn→ℂ))
282190a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐶 ⊆ ℂ)
283263recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
284194a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ℂ ⊆ ℂ)
285282, 283, 284constcncfg 38756 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
286282, 284idcncfg 38757 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
287285, 286mulcncf 23023 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
288287adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
289281, 288cncfmpt1f 22524 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
290 cnmbf 23232 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
291176, 289, 290sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
292140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
293 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
294267ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
295 dmmptg 5549 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
296294, 295syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
297296adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
298293, 297eleqtrd 2690 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
299 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
300215fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
301300adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
302 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦𝐶)
303263adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
304136, 302sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
305303, 304remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
306305resincld 14712 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
307299, 301, 302, 306fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
308307fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
309 abssinbd 38450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
310305, 309syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
311308, 310eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
312298, 311syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
313312ralrimiva 2949 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
314 breq2 4587 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
315314ralbidv 2969 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
316315rspcev 3282 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
317203, 313, 316sylancr 694 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
318317adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
319 bddmulibl 23411 . . . . . . . . . . . . . . 15 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
320291, 292, 318, 319syl3anc 1318 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
321279, 320eqeltrd 2688 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
32283, 321syldan 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
323257, 270, 322itgmulc2 23406 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥)
324257adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
32553, 275sylanl2 681 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
326324, 241, 325mul12d 10124 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))))
327324, 325mulcomd 9940 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥))) = ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))
328327oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑋)) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
329326, 328eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
330329itgeq2dv 23354 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) d𝑥 = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
331323, 330eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) = ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥)
332331oveq1d 6564 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((sin‘(𝑛 · 𝑋)) · ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
333261, 332eqtr3d 2646 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((sin‘(𝑛 · 𝑋)) · (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
334255, 258, 3333eqtrd 2648 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π))
335251, 334oveq12d 6567 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
33654, 168sylanl2 681 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
33755, 208sylan 487 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
33861adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑋)) ∈ ℝ)
339337, 338remulcld 9949 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℝ)
340336, 339remulcld 9949 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) ∈ ℝ)
341241, 242, 240mul13d 38432 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
342242, 241mulcomd 9940 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
343342oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑋)) · ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
344341, 343eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) = ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
345344mpteq2dva 4672 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))))
346159, 174, 238iblmulc2 23403 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))) ∈ 𝐿1)
347345, 346eqeltrd 2688 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))))) ∈ 𝐿1)
348340, 347itgcl 23356 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
34983, 267sylan 487 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
35085adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑋)) ∈ ℝ)
351349, 350remulcld 9949 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℝ)
352336, 351remulcld 9949 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) ∈ ℝ)
353241, 325, 324mul13d 38432 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
354325, 241mulcomd 9940 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
355354oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑋)) · ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
356353, 355eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) = ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
357356mpteq2dva 4672 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))))
358257, 270, 322iblmulc2 23403 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑋)) · ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))) ∈ 𝐿1)
359357, 358eqeltrd 2688 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) ∈ 𝐿1)
360352, 359itgcl 23356 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 ∈ ℂ)
361348, 360, 163, 164divdird 10718 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 / π) + (∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥 / π)))
36253nncnd 10913 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
363362ad2antlr 759 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℂ)
364108adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℂ)
36558recnd 9947 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℂ)
366365ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℂ)
367363, 364, 366subdid 10365 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) = ((𝑛 · 𝑥) − (𝑛 · 𝑋)))
368367fveq2d 6107 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))))
369363, 364mulcld 9939 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑥) ∈ ℂ)
370363, 366mulcld 9939 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · 𝑋) ∈ ℂ)
371 cossub 14738 . . . . . . . . . . . . 13 (((𝑛 · 𝑥) ∈ ℂ ∧ (𝑛 · 𝑋) ∈ ℂ) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
372369, 370, 371syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘((𝑛 · 𝑥) − (𝑛 · 𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
373368, 372eqtrd 2644 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) = (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))))
374373oveq2d 6565 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
375339recnd 9947 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) ∈ ℂ)
376351recnd 9947 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
377241, 375, 376adddid 9943 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋))) + ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
378374, 377eqtrd 2644 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = (((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))))
379378itgeq2dv 23354 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥)
380340, 347, 352, 359itgadd 23397 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶(((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) + ((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋))))) d𝑥 = (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥))
381379, 380eqtr2d 2645 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) = ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
382381oveq1d 6564 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((∫𝐶((𝐹𝑥) · ((cos‘(𝑛 · 𝑥)) · (cos‘(𝑛 · 𝑋)))) d𝑥 + ∫𝐶((𝐹𝑥) · ((sin‘(𝑛 · 𝑥)) · (sin‘(𝑛 · 𝑋)))) d𝑥) / π) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
383335, 361, 3823eqtr2d 2650 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
384383sumeq2dv 14281 . . . 4 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
38557adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑛 ∈ ℝ)
386117adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑥 ∈ ℝ)
38758ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → 𝑋 ∈ ℝ)
388386, 387resubcld 10337 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
389385, 388remulcld 9949 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (𝑛 · (𝑥𝑋)) ∈ ℝ)
390389recoscld 14713 . . . . . . 7 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
391336, 390remulcld 9949 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
392177a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ∈ V)
393 eqidd 2611 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
394 eqidd 2611 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
395392, 390, 336, 393, 394offval2 6812 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))))
396390recnd 9947 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
397396, 241mulcomd 9940 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) → ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
398397mpteq2dva 4672 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((cos‘(𝑛 · (𝑥𝑋))) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
399395, 398eqtr2d 2645 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
400187a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → cos ∈ (ℂ–cn→ℂ))
40183, 285syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
40283, 286syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
403190a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝐶 ⊆ ℂ)
404365adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
405194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
406403, 404, 405constcncfg 38756 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶𝑋) ∈ (𝐶cn→ℂ))
407402, 406subcncf 38754 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑥𝑋)) ∈ (𝐶cn→ℂ))
408401, 407mulcncf 23023 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝑛 · (𝑥𝑋))) ∈ (𝐶cn→ℂ))
409400, 408cncfmpt1f 22524 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ))
410 cnmbf 23232 . . . . . . . . 9 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
411176, 409, 410sylancr 694 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn)
412140adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
413 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
414390ralrimiva 2949 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
415 dmmptg 5549 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
416414, 415syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
417416adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = 𝐶)
418413, 417eleqtrd 2690 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → 𝑦𝐶)
419 eqidd 2611 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) = (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))))
420 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥𝑋) = (𝑦𝑋))
421420oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑛 · (𝑥𝑋)) = (𝑛 · (𝑦𝑋)))
422421fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
423422adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · (𝑥𝑋))) = (cos‘(𝑛 · (𝑦𝑋))))
424 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦𝐶)
42557adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑛 ∈ ℝ)
42655, 220sylan 487 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑦 ∈ ℝ)
42758ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → 𝑋 ∈ ℝ)
428426, 427resubcld 10337 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
429425, 428remulcld 9949 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (𝑛 · (𝑦𝑋)) ∈ ℝ)
430429recoscld 14713 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (cos‘(𝑛 · (𝑦𝑋))) ∈ ℝ)
431419, 423, 424, 430fvmptd 6197 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦) = (cos‘(𝑛 · (𝑦𝑋))))
432431fveq2d 6107 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) = (abs‘(cos‘(𝑛 · (𝑦𝑋)))))
433 abscosbd 38431 . . . . . . . . . . . . 13 ((𝑛 · (𝑦𝑋)) ∈ ℝ → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
434429, 433syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘(cos‘(𝑛 · (𝑦𝑋)))) ≤ 1)
435432, 434eqbrtrd 4605 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
436418, 435syldan 486 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
437436ralrimiva 2949 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1)
438 breq2 4587 . . . . . . . . . . 11 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
439438ralbidv 2969 . . . . . . . . . 10 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1))
440439rspcev 3282 . . . . . . . . 9 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
441203, 437, 440sylancr 694 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏)
442 bddmulibl 23411 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋))))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
443411, 412, 441, 442syl3anc 1318 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐶 ↦ (cos‘(𝑛 · (𝑥𝑋)))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
444399, 443eqeltrd 2688 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
445391, 444itgcl 23356 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
44628, 142, 445, 102fsumdivc 14360 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = Σ𝑛 ∈ (1...𝑁)(∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
447176a1i 11 . . . . . . . 8 (𝜑𝐶 ∈ dom vol)
448 anass 679 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)))
449 ancom 465 . . . . . . . . . . 11 ((𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶) ↔ (𝑥𝐶𝑛 ∈ (1...𝑁)))
450449anbi2i 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑥𝐶)) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
451448, 450bitri 263 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐶) ↔ (𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))))
452451, 391sylbir 224 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑛 ∈ (1...𝑁))) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
453447, 28, 452, 444itgfsum 23399 . . . . . . 7 (𝜑 → ((𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1 ∧ ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
454453simprd 478 . . . . . 6 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
455454eqcomd 2616 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 = ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥)
456455oveq1d 6564 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...𝑁)∫𝐶((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
457384, 446, 4563eqtr2d 2650 . . 3 (𝜑 → Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π))
458153, 457oveq12d 6567 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑁)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
459 fourierdlem83.d . . . . . . . . . . 11 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
4607adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑁 ∈ ℕ)
461 eqid 2610 . . . . . . . . . . 11 (𝐷𝑁) = (𝐷𝑁)
462 eqid 2610 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π))
463459, 460, 461, 462dirkertrigeq 38994 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π)))
464 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑠 = (𝑥𝑋) → (𝑛 · 𝑠) = (𝑛 · (𝑥𝑋)))
465464fveq2d 6107 . . . . . . . . . . . . . 14 (𝑠 = (𝑥𝑋) → (cos‘(𝑛 · 𝑠)) = (cos‘(𝑛 · (𝑥𝑋))))
466465sumeq2sdv 14282 . . . . . . . . . . . . 13 (𝑠 = (𝑥𝑋) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠)) = Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))
467466oveq2d 6565 . . . . . . . . . . . 12 (𝑠 = (𝑥𝑋) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
468467oveq1d 6564 . . . . . . . . . . 11 (𝑠 = (𝑥𝑋) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
469468adantl 481 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑠 = (𝑥𝑋)) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝑠))) / π) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
47058adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑋 ∈ ℝ)
471118, 470resubcld 10337 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝑥𝑋) ∈ ℝ)
472 halfre 11123 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
473472a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℝ)
474 fzfid 12634 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (1...𝑁) ∈ Fin)
475390an32s 842 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
476474, 475fsumrecl 14312 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℝ)
477473, 476readdcld 9948 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
47844a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ∈ ℝ)
47948a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → π ≠ 0)
480477, 478, 479redivcld 10732 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) ∈ ℝ)
481463, 469, 471, 480fvmptd 6197 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) = (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π))
482481, 480eqeltrd 2688 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
483119, 482remulcld 9949 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) ∈ ℝ)
484177a1i 11 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
485 eqidd 2611 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
486 eqidd 2611 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
487484, 482, 119, 485, 486offval2 6812 . . . . . . . . 9 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
488482recnd 9947 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
489488, 120mulcomd 9940 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥)) = ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))))
490489mpteq2dva 4672 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
491487, 490eqtr2d 2645 . . . . . . . 8 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) = ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
492 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))
493 eqid 2610 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋)))
494194a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ⊆ ℂ)
495 cncfss 22510 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
496189, 494, 495sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
497 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
49858adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝑋 ∈ ℝ)
499497, 498resubcld 10337 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝑥𝑋) ∈ ℝ)
500 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ ↦ (𝑥𝑋)) = (𝑥 ∈ ℝ ↦ (𝑥𝑋))
501499, 500fmptd 6292 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ)
502189a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℝ ⊆ ℂ)
503502, 494idcncfg 38757 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℂ))
504502, 365, 494constcncfg 38756 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℝ ↦ 𝑋) ∈ (ℝ–cn→ℂ))
505503, 504subcncf 38754 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ))
506 cncffvrn 22509 . . . . . . . . . . . . . . . 16 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
507189, 505, 506sylancr 694 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥𝑋)):ℝ⟶ℝ))
508501, 507mpbird 246 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥𝑋)) ∈ (ℝ–cn→ℝ))
509459dirkercncf 39000 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
5107, 509syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
511508, 510cncfcompt 38768 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℝ))
512496, 511sseldd 3569 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (ℝ–cn→ℂ))
51344renegcli 10221 . . . . . . . . . . . . . 14 -π ∈ ℝ
514 iccssre 12126 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
515513, 44, 514mp2an 704 . . . . . . . . . . . . 13 (-π[,]π) ⊆ ℝ
516515a1i 11 . . . . . . . . . . . 12 (𝜑 → (-π[,]π) ⊆ ℝ)
517459dirkerf 38990 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
5187, 517syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
519518adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
520516sselda 3568 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
52158adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
522520, 521resubcld 10337 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑥𝑋) ∈ ℝ)
523519, 522ffvelrnd 6268 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
524523recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℂ)
525493, 512, 516, 494, 524cncfmptssg 38755 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℂ))
526132a1i 11 . . . . . . . . . . 11 (𝜑𝐶 ⊆ (-π[,]π))
527492, 525, 526, 494, 488cncfmptssg 38755 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ))
528 cnmbf 23232 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
529176, 527, 528sylancr 694 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn)
530513a1i 11 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
531 0red 9920 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
532 negpilt0 38433 . . . . . . . . . . . . . . . 16 -π < 0
533532a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -π < 0)
53447a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < π)
535530, 531, 101, 533, 534lttrd 10077 . . . . . . . . . . . . . 14 (𝜑 → -π < π)
536530, 101, 535ltled 10064 . . . . . . . . . . . . 13 (𝜑 → -π ≤ π)
537493, 512, 516, 502, 523cncfmptssg 38755 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ ((-π[,]π)–cn→ℝ))
538530, 101, 536, 537evthiccabs 38565 . . . . . . . . . . . 12 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ∧ ∃𝑧 ∈ (-π[,]π)∀𝑤 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑧)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑤))))
539538simpld 474 . . . . . . . . . . 11 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)))
540 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
541420fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
542541adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (-π[,]π)) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
543 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ (-π[,]π))
544518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
545515, 543sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑦 ∈ ℝ)
54658adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
547545, 546resubcld 10337 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (-π[,]π)) → (𝑦𝑋) ∈ ℝ)
548544, 547ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
549540, 542, 543, 548fvmptd 6197 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
550549fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
551550adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
552 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋))))
553 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑥𝑋) = (𝑐𝑋))
554553fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
555554adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑥 = 𝑐) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑐𝑋)))
556 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
557518adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝐷𝑁):ℝ⟶ℝ)
558515, 556sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑐 ∈ ℝ)
55958adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
560558, 559resubcld 10337 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ (-π[,]π)) → (𝑐𝑋) ∈ ℝ)
561557, 560ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℝ)
562552, 555, 556, 561fvmptd 6197 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐) = ((𝐷𝑁)‘(𝑐𝑋)))
563562fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
564563adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) = (abs‘((𝐷𝑁)‘(𝑐𝑋))))
565551, 564breq12d 4596 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (-π[,]π)) ∧ 𝑦 ∈ (-π[,]π)) → ((abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
566565ralbidva 2968 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π)) → (∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
567566rexbidva 3031 . . . . . . . . . . 11 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝑥 ∈ (-π[,]π) ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑐)) ↔ ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
568539, 567mpbid 221 . . . . . . . . . 10 (𝜑 → ∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
569561recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑐𝑋)) ∈ ℂ)
570569abscld 14023 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
5715703adant3 1074 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ)
572 nfv 1830 . . . . . . . . . . . . . 14 𝑦𝜑
573 nfv 1830 . . . . . . . . . . . . . 14 𝑦 𝑐 ∈ (-π[,]π)
574 nfra1 2925 . . . . . . . . . . . . . 14 𝑦𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))
575572, 573, 574nf3an 1819 . . . . . . . . . . . . 13 𝑦(𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
576 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
577482ralrimiva 2949 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ)
578 dmmptg 5549 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝐶 ((𝐷𝑁)‘(𝑥𝑋)) ∈ ℝ → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
579577, 578syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
580579adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = 𝐶)
581576, 580eleqtrd 2690 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
5825813ad2antl1 1216 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → 𝑦𝐶)
583 eqidd 2611 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) = (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))))
584541adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝑦) → ((𝐷𝑁)‘(𝑥𝑋)) = ((𝐷𝑁)‘(𝑦𝑋)))
585 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → 𝑦𝐶)
586518adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝐷𝑁):ℝ⟶ℝ)
587136, 585sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑦 ∈ ℝ)
58858adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦𝐶) → 𝑋 ∈ ℝ)
589587, 588resubcld 10337 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦𝐶) → (𝑦𝑋) ∈ ℝ)
590586, 589ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐶) → ((𝐷𝑁)‘(𝑦𝑋)) ∈ ℝ)
591583, 584, 585, 590fvmptd 6197 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐶) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦) = ((𝐷𝑁)‘(𝑦𝑋)))
592591fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
593592adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) = (abs‘((𝐷𝑁)‘(𝑦𝑋))))
594 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
595132sseli 3564 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐶𝑦 ∈ (-π[,]π))
596595adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → 𝑦 ∈ (-π[,]π))
597 rspa 2914 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) ∧ 𝑦 ∈ (-π[,]π)) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
598594, 596, 597syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
599593, 598eqbrtrd 4605 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
6005993adantl2 1211 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦𝐶) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
601582, 600syldan 486 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) ∧ 𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
602601ex 449 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → (𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) → (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
603575, 602ralrimi 2940 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))))
604 breq2 4587 . . . . . . . . . . . . . 14 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ((abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
605604ralbidv 2969 . . . . . . . . . . . . 13 (𝑏 = (abs‘((𝐷𝑁)‘(𝑐𝑋))) → (∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))))
606605rspcev 3282 . . . . . . . . . . . 12 (((abs‘((𝐷𝑁)‘(𝑐𝑋))) ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
607571, 603, 606syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (-π[,]π) ∧ ∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋)))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
608607rexlimdv3a 3015 . . . . . . . . . 10 (𝜑 → (∃𝑐 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘((𝐷𝑁)‘(𝑦𝑋))) ≤ (abs‘((𝐷𝑁)‘(𝑐𝑋))) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏))
609568, 608mpd 15 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏)
610 bddmulibl 23411 . . . . . . . . 9 (((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))(abs‘((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
611529, 140, 609, 610syl3anc 1318 . . . . . . . 8 (𝜑 → ((𝑥𝐶 ↦ ((𝐷𝑁)‘(𝑥𝑋))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
612491, 611eqeltrd 2688 . . . . . . 7 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) ∈ 𝐿1)
613142, 483, 612itgmulc2 23406 . . . . . 6 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
614142adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → π ∈ ℂ)
615120, 488, 614mul13d 38432 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))))
616489oveq2d 6565 . . . . . . . 8 ((𝜑𝑥𝐶) → (π · (((𝐷𝑁)‘(𝑥𝑋)) · (𝐹𝑥))) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
617615, 616eqtrd 2644 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))))
618617itgeq2dv 23354 . . . . . 6 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(π · ((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋)))) d𝑥)
619613, 618eqtr4d 2647 . . . . 5 (𝜑 → (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) = ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥)
620148adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → (1 / 2) ∈ ℂ)
621620, 120mulcomd 9940 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) = ((𝐹𝑥) · (1 / 2)))
622396an32s 842 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → (cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
623474, 120, 622fsummulc2 14358 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))))
624623eqcomd 2616 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) = ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
625621, 624oveq12d 6567 . . . . . . 7 ((𝜑𝑥𝐶) → (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
626474, 622fsumcl 14311 . . . . . . . 8 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))) ∈ ℂ)
627120, 620, 626adddid 9943 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = (((𝐹𝑥) · (1 / 2)) + ((𝐹𝑥) · Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))))
628481oveq1d 6564 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((𝐷𝑁)‘(𝑥𝑋)) · π) = ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π))
629620, 626addcld 9938 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) ∈ ℂ)
630629, 614, 479divcan1d 10681 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) / π) · π) = ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))))
631628, 630eqtr2d 2645 . . . . . . . 8 ((𝜑𝑥𝐶) → ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋)))) = (((𝐷𝑁)‘(𝑥𝑋)) · π))
632631oveq2d 6565 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝐹𝑥) · ((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · (𝑥𝑋))))) = ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)))
633625, 627, 6323eqtr2rd 2651 . . . . . 6 ((𝜑𝑥𝐶) → ((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) = (((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))))
634633itgeq2dv 23354 . . . . 5 (𝜑 → ∫𝐶((𝐹𝑥) · (((𝐷𝑁)‘(𝑥𝑋)) · π)) d𝑥 = ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥)
635 remulcl 9900 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
636472, 119, 635sylancr 694 . . . . . 6 ((𝜑𝑥𝐶) → ((1 / 2) · (𝐹𝑥)) ∈ ℝ)
637148, 119, 140iblmulc2 23403 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ ((1 / 2) · (𝐹𝑥))) ∈ 𝐿1)
638391an32s 842 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
639474, 638fsumrecl 14312 . . . . . 6 ((𝜑𝑥𝐶) → Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) ∈ ℝ)
640453simpld 474 . . . . . 6 (𝜑 → (𝑥𝐶 ↦ Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) ∈ 𝐿1)
641636, 637, 639, 640itgadd 23397 . . . . 5 (𝜑 → ∫𝐶(((1 / 2) · (𝐹𝑥)) + Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋))))) d𝑥 = (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥))
642619, 634, 6413eqtrrd 2649 . . . 4 (𝜑 → (∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) = (π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥))
643642oveq1d 6564 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π))
644636, 637itgcl 23356 . . . 4 (𝜑 → ∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 ∈ ℂ)
645639, 640itgcl 23356 . . . 4 (𝜑 → ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 ∈ ℂ)
646644, 645, 142, 102divdird 10718 . . 3 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 + ∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥) / π) = ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)))
647483, 612itgcl 23356 . . . 4 (𝜑 → ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥 ∈ ℂ)
648647, 142, 102divcan3d 10685 . . 3 (𝜑 → ((π · ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥) / π) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
649643, 646, 6483eqtr3d 2652 . 2 (𝜑 → ((∫𝐶((1 / 2) · (𝐹𝑥)) d𝑥 / π) + (∫𝐶Σ𝑛 ∈ (1...𝑁)((𝐹𝑥) · (cos‘(𝑛 · (𝑥𝑋)))) d𝑥 / π)) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
65090, 458, 6493eqtrd 2648 1 (𝜑 → (𝑆𝑁) = ∫𝐶((𝐹𝑥) · ((𝐷𝑁)‘(𝑥𝑋))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  (,)cioo 12046  [,]cicc 12049  ...cfz 12197   mod cmo 12530  abscabs 13822  Σcsu 14264  sincsin 14633  cosccos 14634  πcpi 14636  cnccncf 22487  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem111  39110
  Copyright terms: Public domain W3C validator