Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem16 Structured version   Visualization version   GIF version

Theorem fourierdlem16 39016
 Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem16.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem16.c 𝐶 = (-π(,)π)
fourierdlem16.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem16.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem16.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fourierdlem16 (𝜑 → (((𝐴𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Distinct variable groups:   𝐶,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑛)

Proof of Theorem fourierdlem16
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem16.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
3 ioossre 12106 . . . . . . . . . . 11 (-π(,)π) ⊆ ℝ
4 id 22 . . . . . . . . . . . 12 (𝑥𝐶𝑥𝐶)
5 fourierdlem16.c . . . . . . . . . . . 12 𝐶 = (-π(,)π)
64, 5syl6eleq 2698 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π(,)π))
73, 6sseldi 3566 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
87adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
92, 8ffvelrnd 6268 . . . . . . . 8 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
109adantlr 747 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
11 nn0re 11178 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1211adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
137adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1412, 13remulcld 9949 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1514recoscld 14713 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1615adantll 746 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1710, 16remulcld 9949 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
18 ioombl 23140 . . . . . . . . . . 11 (-π(,)π) ∈ dom vol
195, 18eqeltri 2684 . . . . . . . . . 10 𝐶 ∈ dom vol
2019a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
21 eqidd 2611 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
22 eqidd 2611 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2320, 16, 10, 21, 22offval2 6812 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2416recnd 9947 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
2510recnd 9947 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2624, 25mulcomd 9940 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
2726mpteq2dva 4672 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
2823, 27eqtr2d 2645 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
29 coscn 24003 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → cos ∈ (ℂ–cn→ℂ))
315, 3eqsstri 3598 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℝ
32 ax-resscn 9872 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3331, 32sstri 3577 . . . . . . . . . . . . . 14 𝐶 ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3511recnd 9947 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
36 ssid 3587 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3834, 35, 37constcncfg 38756 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
39 cncfmptid 22523 . . . . . . . . . . . . . 14 ((𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4033, 36, 39mp2an 704 . . . . . . . . . . . . 13 (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ)
4140a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4238, 41mulcncf 23023 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4330, 42cncfmpt1f 22524 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 23232 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4519, 43, 44sylancr 694 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4645adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
471feqmptd 6159 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4847reseq1d 5316 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
49 resmpt 5369 . . . . . . . . . . . 12 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5031, 49mp1i 13 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5148, 50eqtr2d 2645 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
52 fourierdlem16.fibl . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5351, 52eqeltrd 2688 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5453adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
55 1re 9918 . . . . . . . . . 10 1 ∈ ℝ
56 simpr 476 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
57 nfv 1830 . . . . . . . . . . . . . . . 16 𝑥 𝑛 ∈ ℕ0
58 nfmpt1 4675 . . . . . . . . . . . . . . . . . 18 𝑥(𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
5958nfdm 5288 . . . . . . . . . . . . . . . . 17 𝑥dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6059nfcri 2745 . . . . . . . . . . . . . . . 16 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6157, 60nfan 1816 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
6215ex 449 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6362adantr 480 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6461, 63ralrimi 2940 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
65 dmmptg 5549 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6664, 65syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6756, 66eleqtrd 2690 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
68 eqidd 2611 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
69 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
7069fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
7170adantl 481 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
72 simpr 476 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7311adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7431, 72sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7573, 74remulcld 9949 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7675recoscld 14713 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
7768, 71, 72, 76fvmptd 6197 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
7877fveq2d 6107 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
79 abscosbd 38431 . . . . . . . . . . . . . 14 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8075, 79syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8178, 80eqbrtrd 4605 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8267, 81syldan 486 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8382ralrimiva 2949 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
84 breq2 4587 . . . . . . . . . . . 12 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584ralbidv 2969 . . . . . . . . . . 11 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8685rspcev 3282 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8755, 83, 86sylancr 694 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8887adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
89 bddmulibl 23411 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9046, 54, 88, 89syl3anc 1318 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9128, 90eqeltrd 2688 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9217, 91itgrecl 23370 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 24014 . . . . . 6 π ∈ ℝ
9493a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
95 0re 9919 . . . . . . 7 0 ∈ ℝ
96 pipos 24016 . . . . . . 7 0 < π
9795, 96gtneii 10028 . . . . . 6 π ≠ 0
9897a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
9992, 94, 98redivcld 10732 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem16.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 6292 . . 3 (𝜑𝐴:ℕ0⟶ℝ)
102 fourierdlem16.n . . 3 (𝜑𝑁 ∈ ℕ0)
103101, 102ffvelrnd 6268 . 2 (𝜑 → (𝐴𝑁) ∈ ℝ)
104102ancli 572 . . 3 (𝜑 → (𝜑𝑁 ∈ ℕ0))
105 eleq1 2676 . . . . . 6 (𝑛 = 𝑁 → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
106105anbi2d 736 . . . . 5 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑𝑁 ∈ ℕ0)))
107 simpl 472 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥𝐶) → 𝑛 = 𝑁)
108107oveq1d 6564 . . . . . . . . 9 ((𝑛 = 𝑁𝑥𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥))
109108fveq2d 6107 . . . . . . . 8 ((𝑛 = 𝑁𝑥𝐶) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑁 · 𝑥)))
110109oveq2d 6565 . . . . . . 7 ((𝑛 = 𝑁𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))))
111110itgeq2dv 23354 . . . . . 6 (𝑛 = 𝑁 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥)
112111eleq1d 2672 . . . . 5 (𝑛 = 𝑁 → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
113106, 112imbi12d 333 . . . 4 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑁 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)))
114113, 92vtoclg 3239 . . 3 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
115102, 104, 114sylc 63 . 2 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)
116103, 53, 115jca31 555 1 (𝜑 → (((𝐴𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   ≤ cle 9954  -cneg 10146   / cdiv 10563  ℕ0cn0 11169  (,)cioo 12046  abscabs 13822  cosccos 14634  πcpi 14636  –cn→ccncf 22487  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem83  39082  fourierdlem112  39111
 Copyright terms: Public domain W3C validator