Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gtneii | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
gtneii | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . 2 ⊢ 𝐴 < 𝐵 | |
3 | ltne 10013 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | mp2an 704 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ℝcr 9814 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 |
This theorem is referenced by: ltneii 10029 fztpval 12272 geo2sum 14443 bpoly4 14629 ene1 14777 3dvds 14890 3dvdsOLD 14891 3lcm2e6 15278 resslem 15760 rescco 16315 oppgtset 17605 mgpsca 18319 mgptset 18320 mgpds 18322 psgnodpmr 19755 matsca 20040 matvsca 20041 tuslem 21881 setsmsds 22091 tngds 22262 logbrec 24320 log2le1 24477 2lgsoddprmlem3a 24935 2lgsoddprmlem3b 24936 2lgsoddprmlem3c 24937 2lgsoddprmlem3d 24938 structvtxval 25698 constr3pthlem1 26183 konigsberg 26514 ex-dif 26672 ex-in 26674 ex-pss 26677 ex-res 26690 oppgle 28984 resvvsca 29165 zlmds 29336 zlmtset 29337 ballotlemi1 29891 sgnnbi 29934 sgnpbi 29935 signswch 29964 fdc 32711 areaquad 36821 stirlinglem4 38970 stirlinglem13 38979 stirlinglem14 38980 stirlingr 38983 dirker2re 38985 dirkerdenne0 38986 dirkerre 38988 dirkertrigeqlem1 38991 dirkercncflem2 38997 dirkercncflem4 38999 fourierdlem16 39016 fourierdlem21 39021 fourierdlem22 39022 fourierdlem66 39065 fourierdlem83 39082 fourierdlem103 39102 fourierdlem104 39103 sqwvfoura 39121 sqwvfourb 39122 fourierswlem 39123 fouriersw 39124 etransclem46 39173 fmtnoprmfac2lem1 40016 konigsberglem2 41423 zlmodzxzldeplem 42081 |
Copyright terms: Public domain | W3C validator |