Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly4 Structured version   Visualization version   GIF version

Theorem bpoly4 14629
 Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))

Proof of Theorem bpoly4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn0 11188 . . 3 4 ∈ ℕ0
2 bpolyval 14619 . . 3 ((4 ∈ ℕ0𝑋 ∈ ℂ) → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
31, 2mpan 702 . 2 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
4 4m1e3 11015 . . . . . . 7 (4 − 1) = 3
5 df-3 10957 . . . . . . 7 3 = (2 + 1)
64, 5eqtri 2632 . . . . . 6 (4 − 1) = (2 + 1)
76oveq2i 6560 . . . . 5 (0...(4 − 1)) = (0...(2 + 1))
87sumeq1i 14276 . . . 4 Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
9 2eluzge0 11609 . . . . . . 7 2 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 2 ∈ (ℤ‘0))
11 elfzelz 12213 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℤ)
12 bccl 12971 . . . . . . . . . 10 ((4 ∈ ℕ0𝑘 ∈ ℤ) → (4C𝑘) ∈ ℕ0)
131, 11, 12sylancr 694 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℕ0)
1413nn0cnd 11230 . . . . . . . 8 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℂ)
1514adantl 481 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (4C𝑘) ∈ ℂ)
16 elfznn0 12302 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℕ0)
17 bpolycl 14622 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1816, 17sylan 487 . . . . . . . . 9 ((𝑘 ∈ (0...(2 + 1)) ∧ 𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1918ancoms 468 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ)
20 4re 10974 . . . . . . . . . . . . 13 4 ∈ ℝ
2120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 4 ∈ ℝ)
2211zred 11358 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℝ)
2321, 22resubcld 10337 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → (4 − 𝑘) ∈ ℝ)
24 peano2re 10088 . . . . . . . . . . 11 ((4 − 𝑘) ∈ ℝ → ((4 − 𝑘) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℝ)
2625recnd 9947 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℂ)
2726adantl 481 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ∈ ℂ)
28 1red 9934 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 1 ∈ ℝ)
295oveq2i 6560 . . . . . . . . . . . . . 14 (0...3) = (0...(2 + 1))
3029eleq2i 2680 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) ↔ 𝑘 ∈ (0...(2 + 1)))
31 elfzelz 12213 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
3231zred 11358 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ∈ ℝ)
33 3re 10971 . . . . . . . . . . . . . . 15 3 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 ∈ ℝ)
3520a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 4 ∈ ℝ)
36 elfzle2 12216 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ≤ 3)
37 3lt4 11074 . . . . . . . . . . . . . . 15 3 < 4
3837a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 < 4)
3932, 34, 35, 36, 38lelttrd 10074 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 < 4)
4030, 39sylbir 224 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 < 4)
4122, 21posdifd 10493 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → (𝑘 < 4 ↔ 0 < (4 − 𝑘)))
4240, 41mpbid 221 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < (4 − 𝑘))
43 0lt1 10429 . . . . . . . . . . . 12 0 < 1
4443a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < 1)
4523, 28, 42, 44addgt0d 10481 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 0 < ((4 − 𝑘) + 1))
4645gt0ne0d 10471 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ≠ 0)
4746adantl 481 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ≠ 0)
4819, 27, 47divcld 10680 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) ∈ ℂ)
4915, 48mulcld 9939 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
505eqeq2i 2622 . . . . . . 7 (𝑘 = 3 ↔ 𝑘 = (2 + 1))
51 oveq2 6557 . . . . . . . . 9 (𝑘 = 3 → (4C𝑘) = (4C3))
52 4bc3eq4 12977 . . . . . . . . 9 (4C3) = 4
5351, 52syl6eq 2660 . . . . . . . 8 (𝑘 = 3 → (4C𝑘) = 4)
54 oveq1 6556 . . . . . . . . 9 (𝑘 = 3 → (𝑘 BernPoly 𝑋) = (3 BernPoly 𝑋))
55 oveq2 6557 . . . . . . . . . . 11 (𝑘 = 3 → (4 − 𝑘) = (4 − 3))
5655oveq1d 6564 . . . . . . . . . 10 (𝑘 = 3 → ((4 − 𝑘) + 1) = ((4 − 3) + 1))
57 4cn 10975 . . . . . . . . . . . . 13 4 ∈ ℂ
58 3cn 10972 . . . . . . . . . . . . 13 3 ∈ ℂ
59 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
60 3p1e4 11030 . . . . . . . . . . . . 13 (3 + 1) = 4
6157, 58, 59, 60subaddrii 10249 . . . . . . . . . . . 12 (4 − 3) = 1
6261oveq1i 6559 . . . . . . . . . . 11 ((4 − 3) + 1) = (1 + 1)
63 df-2 10956 . . . . . . . . . . 11 2 = (1 + 1)
6462, 63eqtr4i 2635 . . . . . . . . . 10 ((4 − 3) + 1) = 2
6556, 64syl6eq 2660 . . . . . . . . 9 (𝑘 = 3 → ((4 − 𝑘) + 1) = 2)
6654, 65oveq12d 6567 . . . . . . . 8 (𝑘 = 3 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((3 BernPoly 𝑋) / 2))
6753, 66oveq12d 6567 . . . . . . 7 (𝑘 = 3 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6850, 67sylbir 224 . . . . . 6 (𝑘 = (2 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6910, 49, 68fsump1 14329 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))))
7063oveq2i 6560 . . . . . . . 8 (0...2) = (0...(1 + 1))
7170sumeq1i 14276 . . . . . . 7 Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
72 1eluzge0 11608 . . . . . . . . . 10 1 ∈ (ℤ‘0)
7372a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
74 fzssp1 12255 . . . . . . . . . . . 12 (0...(1 + 1)) ⊆ (0...((1 + 1) + 1))
7563oveq1i 6559 . . . . . . . . . . . . 13 (2 + 1) = ((1 + 1) + 1)
7675oveq2i 6560 . . . . . . . . . . . 12 (0...(2 + 1)) = (0...((1 + 1) + 1))
7774, 76sseqtr4i 3601 . . . . . . . . . . 11 (0...(1 + 1)) ⊆ (0...(2 + 1))
7877sseli 3564 . . . . . . . . . 10 (𝑘 ∈ (0...(1 + 1)) → 𝑘 ∈ (0...(2 + 1)))
7978, 49sylan2 490 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
8063eqeq2i 2622 . . . . . . . . . 10 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
81 oveq2 6557 . . . . . . . . . . . 12 (𝑘 = 2 → (4C𝑘) = (4C2))
82 4bc2eq6 12978 . . . . . . . . . . . 12 (4C2) = 6
8381, 82syl6eq 2660 . . . . . . . . . . 11 (𝑘 = 2 → (4C𝑘) = 6)
84 oveq1 6556 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
85 oveq2 6557 . . . . . . . . . . . . . 14 (𝑘 = 2 → (4 − 𝑘) = (4 − 2))
8685oveq1d 6564 . . . . . . . . . . . . 13 (𝑘 = 2 → ((4 − 𝑘) + 1) = ((4 − 2) + 1))
87 2cn 10968 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
88 2p2e4 11021 . . . . . . . . . . . . . . . 16 (2 + 2) = 4
8957, 87, 87, 88subaddrii 10249 . . . . . . . . . . . . . . 15 (4 − 2) = 2
9089oveq1i 6559 . . . . . . . . . . . . . 14 ((4 − 2) + 1) = (2 + 1)
9190, 5eqtr4i 2635 . . . . . . . . . . . . 13 ((4 − 2) + 1) = 3
9286, 91syl6eq 2660 . . . . . . . . . . . 12 (𝑘 = 2 → ((4 − 𝑘) + 1) = 3)
9384, 92oveq12d 6567 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 3))
9483, 93oveq12d 6567 . . . . . . . . . 10 (𝑘 = 2 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9580, 94sylbir 224 . . . . . . . . 9 (𝑘 = (1 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9673, 79, 95fsump1 14329 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))))
97 0p1e1 11009 . . . . . . . . . . . 12 (0 + 1) = 1
9897oveq2i 6560 . . . . . . . . . . 11 (0...(0 + 1)) = (0...1)
9998sumeq1i 14276 . . . . . . . . . 10 Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
100 0nn0 11184 . . . . . . . . . . . . . 14 0 ∈ ℕ0
101 nn0uz 11598 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
102100, 101eleqtri 2686 . . . . . . . . . . . . 13 0 ∈ (ℤ‘0)
103102a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
104 3nn 11063 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
105 nnuz 11599 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
106104, 105eleqtri 2686 . . . . . . . . . . . . . . . 16 3 ∈ (ℤ‘1)
107 fzss2 12252 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘1) → (0...1) ⊆ (0...3))
108106, 107ax-mp 5 . . . . . . . . . . . . . . 15 (0...1) ⊆ (0...3)
109 2p1e3 11028 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
110109oveq2i 6560 . . . . . . . . . . . . . . 15 (0...(2 + 1)) = (0...3)
111108, 98, 1103sstr4i 3607 . . . . . . . . . . . . . 14 (0...(0 + 1)) ⊆ (0...(2 + 1))
112111sseli 3564 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) → 𝑘 ∈ (0...(2 + 1)))
113112, 49sylan2 490 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
11497eqeq2i 2622 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
115 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (4C𝑘) = (4C1))
116 bcn1 12962 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ0 → (4C1) = 4)
1171, 116ax-mp 5 . . . . . . . . . . . . . . 15 (4C1) = 4
118115, 117syl6eq 2660 . . . . . . . . . . . . . 14 (𝑘 = 1 → (4C𝑘) = 4)
119 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
120 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (4 − 𝑘) = (4 − 1))
121120oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((4 − 𝑘) + 1) = ((4 − 1) + 1))
1224oveq1i 6559 . . . . . . . . . . . . . . . . 17 ((4 − 1) + 1) = (3 + 1)
123 df-4 10958 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
124122, 123eqtr4i 2635 . . . . . . . . . . . . . . . 16 ((4 − 1) + 1) = 4
125121, 124syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((4 − 𝑘) + 1) = 4)
126119, 125oveq12d 6567 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 4))
127118, 126oveq12d 6567 . . . . . . . . . . . . 13 (𝑘 = 1 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
128114, 127sylbi 206 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
129103, 113, 128fsump1 14329 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))))
130 0z 11265 . . . . . . . . . . . . . 14 0 ∈ ℤ
13159a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → 1 ∈ ℂ)
132 bpolycl 14622 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℕ0𝑋 ∈ ℂ) → (0 BernPoly 𝑋) ∈ ℂ)
133100, 132mpan 702 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) ∈ ℂ)
134 5cn 10977 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
135134a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ∈ ℂ)
136 0re 9919 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
137 5pos 10995 . . . . . . . . . . . . . . . . . 18 0 < 5
138136, 137gtneii 10028 . . . . . . . . . . . . . . . . 17 5 ≠ 0
139138a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ≠ 0)
140133, 135, 139divcld 10680 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) ∈ ℂ)
141131, 140mulcld 9939 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ)
142 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (4C𝑘) = (4C0))
143 bcn0 12959 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ0 → (4C0) = 1)
1441, 143ax-mp 5 . . . . . . . . . . . . . . . . 17 (4C0) = 1
145142, 144syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (4C𝑘) = 1)
146 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
147 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (4 − 𝑘) = (4 − 0))
148147oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → ((4 − 𝑘) + 1) = ((4 − 0) + 1))
14957subid1i 10232 . . . . . . . . . . . . . . . . . . . 20 (4 − 0) = 4
150149oveq1i 6559 . . . . . . . . . . . . . . . . . . 19 ((4 − 0) + 1) = (4 + 1)
151 4p1e5 11031 . . . . . . . . . . . . . . . . . . 19 (4 + 1) = 5
152150, 151eqtri 2632 . . . . . . . . . . . . . . . . . 18 ((4 − 0) + 1) = 5
153148, 152syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((4 − 𝑘) + 1) = 5)
154146, 153oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 5))
155145, 154oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
156155fsum1 14320 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
157130, 141, 156sylancr 694 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
158 bpoly0 14620 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
159158oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) = (1 / 5))
160159oveq2d 6565 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 · (1 / 5)))
161134, 138reccli 10634 . . . . . . . . . . . . . . 15 (1 / 5) ∈ ℂ
162161mulid2i 9922 . . . . . . . . . . . . . 14 (1 · (1 / 5)) = (1 / 5)
163160, 162syl6eq 2660 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 / 5))
164157, 163eqtrd 2644 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 / 5))
165 1nn0 11185 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
166 bpolycl 14622 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) ∈ ℂ)
167165, 166mpan 702 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) ∈ ℂ)
168 nn0cn 11179 . . . . . . . . . . . . . . 15 (4 ∈ ℕ0 → 4 ∈ ℂ)
1691, 168mp1i 13 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ∈ ℂ)
170 4ne0 10994 . . . . . . . . . . . . . . 15 4 ≠ 0
171170a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ≠ 0)
172167, 169, 171divcan2d 10682 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (1 BernPoly 𝑋))
173 bpoly1 14621 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
174172, 173eqtrd 2644 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (𝑋 − (1 / 2)))
175164, 174oveq12d 6567 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))) = ((1 / 5) + (𝑋 − (1 / 2))))
176129, 175eqtrd 2644 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
17799, 176syl5eqr 2658 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
178 6cn 10979 . . . . . . . . . . . 12 6 ∈ ℂ
179178a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 6 ∈ ℂ)
180 2nn0 11186 . . . . . . . . . . . 12 2 ∈ ℕ0
181 bpolycl 14622 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
182180, 181mpan 702 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
18358a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ∈ ℂ)
184 3ne0 10992 . . . . . . . . . . . 12 3 ≠ 0
185184a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ≠ 0)
186179, 182, 183, 185div12d 10716 . . . . . . . . . 10 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = ((2 BernPoly 𝑋) · (6 / 3)))
187 3t2e6 11056 . . . . . . . . . . . . 13 (3 · 2) = 6
188178, 58, 87, 184divmuli 10658 . . . . . . . . . . . . 13 ((6 / 3) = 2 ↔ (3 · 2) = 6)
189187, 188mpbir 220 . . . . . . . . . . . 12 (6 / 3) = 2
190189oveq2i 6560 . . . . . . . . . . 11 ((2 BernPoly 𝑋) · (6 / 3)) = ((2 BernPoly 𝑋) · 2)
19187a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → 2 ∈ ℂ)
192182, 191mulcomd 9940 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (2 BernPoly 𝑋)))
193 bpoly2 14627 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
194193oveq2d 6565 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · (2 BernPoly 𝑋)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
195192, 194eqtrd 2644 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
196190, 195syl5eq 2656 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (6 / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
197186, 196eqtrd 2644 . . . . . . . . 9 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
198177, 197oveq12d 6567 . . . . . . . 8 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
19996, 198eqtrd 2644 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
20071, 199syl5eq 2656 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
201 3nn0 11187 . . . . . . . . 9 3 ∈ ℕ0
202 bpolycl 14622 . . . . . . . . 9 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) ∈ ℂ)
203201, 202mpan 702 . . . . . . . 8 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) ∈ ℂ)
204 2ne0 10990 . . . . . . . . 9 2 ≠ 0
205204a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → 2 ≠ 0)
206169, 203, 191, 205div12d 10716 . . . . . . 7 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = ((3 BernPoly 𝑋) · (4 / 2)))
207 4d2e2 11061 . . . . . . . . 9 (4 / 2) = 2
208207oveq2i 6560 . . . . . . . 8 ((3 BernPoly 𝑋) · (4 / 2)) = ((3 BernPoly 𝑋) · 2)
209203, 191mulcomd 9940 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (3 BernPoly 𝑋)))
210 bpoly3 14628 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
211210oveq2d 6565 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · (3 BernPoly 𝑋)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
212209, 211eqtrd 2644 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
213208, 212syl5eq 2656 . . . . . . 7 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · (4 / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
214206, 213eqtrd 2644 . . . . . 6 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
215200, 214oveq12d 6567 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
21669, 215eqtrd 2644 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
2178, 216syl5eq 2656 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
218217oveq2d 6565 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))) = ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))))
219 expcl 12740 . . . . 5 ((𝑋 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝑋↑4) ∈ ℂ)
2201, 219mpan2 703 . . . 4 (𝑋 ∈ ℂ → (𝑋↑4) ∈ ℂ)
221 expcl 12740 . . . . . 6 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
222201, 221mpan2 703 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
223191, 222mulcld 9939 . . . 4 (𝑋 ∈ ℂ → (2 · (𝑋↑3)) ∈ ℂ)
224 sqcl 12787 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
225201, 100deccl 11388 . . . . . . . 8 30 ∈ ℕ0
226225nn0cni 11181 . . . . . . 7 30 ∈ ℂ
227 dfdec10 11373 . . . . . . . . 9 30 = ((10 · 3) + 0)
228 10re 11393 . . . . . . . . . . . 12 10 ∈ ℝ
229228recni 9931 . . . . . . . . . . 11 10 ∈ ℂ
230229, 58mulcli 9924 . . . . . . . . . 10 (10 · 3) ∈ ℂ
231230addid1i 10102 . . . . . . . . 9 ((10 · 3) + 0) = (10 · 3)
232227, 231eqtri 2632 . . . . . . . 8 30 = (10 · 3)
233 10pos 11391 . . . . . . . . . 10 0 < 10
234136, 233gtneii 10028 . . . . . . . . 9 10 ≠ 0
235229, 58, 234, 184mulne0i 10549 . . . . . . . 8 (10 · 3) ≠ 0
236232, 235eqnetri 2852 . . . . . . 7 30 ≠ 0
237226, 236reccli 10634 . . . . . 6 (1 / 30) ∈ ℂ
238237a1i 11 . . . . 5 (𝑋 ∈ ℂ → (1 / 30) ∈ ℂ)
239224, 238subcld 10271 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑2) − (1 / 30)) ∈ ℂ)
240220, 223, 239subsubd 10299 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
241161a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → (1 / 5) ∈ ℂ)
242 id 22 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
24387, 204reccli 10634 . . . . . . . . . 10 (1 / 2) ∈ ℂ
244243a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 2) ∈ ℂ)
245242, 244subcld 10271 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
246241, 245addcld 9938 . . . . . . 7 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (1 / 2))) ∈ ℂ)
247224, 242subcld 10271 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋↑2) − 𝑋) ∈ ℂ)
248 6pos 10996 . . . . . . . . . . . 12 0 < 6
249136, 248gtneii 10028 . . . . . . . . . . 11 6 ≠ 0
250178, 249reccli 10634 . . . . . . . . . 10 (1 / 6) ∈ ℂ
251250a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 6) ∈ ℂ)
252247, 251addcld 9938 . . . . . . . 8 (𝑋 ∈ ℂ → (((𝑋↑2) − 𝑋) + (1 / 6)) ∈ ℂ)
253191, 252mulcld 9939 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) ∈ ℂ)
254246, 253addcld 9938 . . . . . 6 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) ∈ ℂ)
25558, 87, 204divcli 10646 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
256255a1i 11 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 / 2) ∈ ℂ)
257256, 224mulcld 9939 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
258222, 257subcld 10271 . . . . . . . 8 (𝑋 ∈ ℂ → ((𝑋↑3) − ((3 / 2) · (𝑋↑2))) ∈ ℂ)
259244, 242mulcld 9939 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
260258, 259addcld 9938 . . . . . . 7 (𝑋 ∈ ℂ → (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)) ∈ ℂ)
261191, 260mulcld 9939 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) ∈ ℂ)
262254, 261addcomd 10117 . . . . 5 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
263191, 258, 259adddid 9943 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))))
264191, 222, 257subdid 10365 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) = ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))))
26587, 204recidi 10635 . . . . . . . . . 10 (2 · (1 / 2)) = 1
266265oveq1i 6559 . . . . . . . . 9 ((2 · (1 / 2)) · 𝑋) = (1 · 𝑋)
267191, 244, 242mulassd 9942 . . . . . . . . 9 (𝑋 ∈ ℂ → ((2 · (1 / 2)) · 𝑋) = (2 · ((1 / 2) · 𝑋)))
268 mulid2 9917 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
269266, 267, 2683eqtr3a 2668 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((1 / 2) · 𝑋)) = 𝑋)
270264, 269oveq12d 6567 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
271263, 270eqtrd 2644 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
272271oveq1d 6564 . . . . 5 (𝑋 ∈ ℂ → ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
273191, 257mulcld 9939 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) ∈ ℂ)
274223, 273subcld 10271 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) ∈ ℂ)
275274, 242, 254addassd 9941 . . . . . 6 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
276242, 254addcld 9938 . . . . . . 7 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) ∈ ℂ)
277223, 273, 276subsubd 10299 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
27858, 87, 204divcan2i 10647 . . . . . . . . . . 11 (2 · (3 / 2)) = 3
279278oveq1i 6559 . . . . . . . . . 10 ((2 · (3 / 2)) · (𝑋↑2)) = (3 · (𝑋↑2))
280191, 256, 224mulassd 9942 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 · (3 / 2)) · (𝑋↑2)) = (2 · ((3 / 2) · (𝑋↑2))))
281279, 280syl5reqr 2659 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) = (3 · (𝑋↑2)))
282281oveq1d 6564 . . . . . . . 8 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
283242, 246, 253add12d 10141 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
284191, 247, 251adddid 9943 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))))
285191, 224, 242subdid 10365 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · ((𝑋↑2) − 𝑋)) = ((2 · (𝑋↑2)) − (2 · 𝑋)))
286187oveq2i 6560 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (2 / 6)
28758, 184reccli 10634 . . . . . . . . . . . . . . . . . . . 20 (1 / 3) ∈ ℂ
28858, 87, 287mul32i 10111 . . . . . . . . . . . . . . . . . . 19 ((3 · 2) · (1 / 3)) = ((3 · (1 / 3)) · 2)
28958, 184recidi 10635 . . . . . . . . . . . . . . . . . . . . 21 (3 · (1 / 3)) = 1
290289oveq1i 6559 . . . . . . . . . . . . . . . . . . . 20 ((3 · (1 / 3)) · 2) = (1 · 2)
29187mulid2i 9922 . . . . . . . . . . . . . . . . . . . 20 (1 · 2) = 2
292290, 291eqtri 2632 . . . . . . . . . . . . . . . . . . 19 ((3 · (1 / 3)) · 2) = 2
293288, 292eqtri 2632 . . . . . . . . . . . . . . . . . 18 ((3 · 2) · (1 / 3)) = 2
294187, 178eqeltri 2684 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ∈ ℂ
295187, 249eqnetri 2852 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ≠ 0
29687, 294, 287, 295divmuli 10658 . . . . . . . . . . . . . . . . . 18 ((2 / (3 · 2)) = (1 / 3) ↔ ((3 · 2) · (1 / 3)) = 2)
297293, 296mpbir 220 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (1 / 3)
29887, 178, 249divreci 10649 . . . . . . . . . . . . . . . . 17 (2 / 6) = (2 · (1 / 6))
299286, 297, 2983eqtr3ri 2641 . . . . . . . . . . . . . . . 16 (2 · (1 / 6)) = (1 / 3)
300299a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · (1 / 6)) = (1 / 3))
301285, 300oveq12d 6567 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
302284, 301eqtrd 2644 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
303302oveq2d 6565 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
304191, 224mulcld 9939 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (𝑋↑2)) ∈ ℂ)
305191, 242mulcld 9939 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · 𝑋) ∈ ℂ)
306304, 305subcld 10271 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) − (2 · 𝑋)) ∈ ℂ)
307287a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 / 3) ∈ ℂ)
308242, 306, 307addassd 9941 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
309242, 304, 305addsub12d 10294 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) = ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))))
310309oveq1d 6564 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
311303, 308, 3103eqtr2d 2650 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
312311oveq2d 6565 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
313283, 312eqtrd 2644 . . . . . . . . 9 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
314313oveq2d 6565 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))))
315242, 305subcld 10271 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (2 · 𝑋)) ∈ ℂ)
316304, 315addcld 9938 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
317241, 245, 316, 307add4d 10143 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
318241, 304, 315add12d 10141 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) = ((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))))
319318oveq1d 6564 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
320241, 315addcld 9938 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
321245, 307addcld 9938 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 − (1 / 2)) + (1 / 3)) ∈ ℂ)
322304, 320, 321addassd 9941 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
323317, 319, 3223eqtrd 2648 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
324323oveq2d 6565 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
325183, 224mulcld 9939 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · (𝑋↑2)) ∈ ℂ)
326320, 321addcld 9938 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) ∈ ℂ)
327325, 304, 326subsub4d 10302 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
32858, 87, 59, 109subaddrii 10249 . . . . . . . . . . . 12 (3 − 2) = 1
329328oveq1i 6559 . . . . . . . . . . 11 ((3 − 2) · (𝑋↑2)) = (1 · (𝑋↑2))
330183, 191, 224subdird 10366 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 − 2) · (𝑋↑2)) = ((3 · (𝑋↑2)) − (2 · (𝑋↑2))))
331224mulid2d 9937 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · (𝑋↑2)) = (𝑋↑2))
332329, 330, 3313eqtr3a 2668 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (2 · (𝑋↑2))) = (𝑋↑2))
333241, 305, 242subsubd 10299 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = (((1 / 5) − (2 · 𝑋)) + 𝑋))
334 2txmxeqx 11026 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · 𝑋) − 𝑋) = 𝑋)
335334oveq2d 6565 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = ((1 / 5) − 𝑋))
336241, 305, 242subadd23d 10293 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((1 / 5) − (2 · 𝑋)) + 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
337333, 335, 3363eqtr3d 2652 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) − 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
338242, 244, 307subsubd 10299 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − ((1 / 2) − (1 / 3))) = ((𝑋 − (1 / 2)) + (1 / 3)))
339337, 338oveq12d 6567 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))
340243, 287subcli 10236 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) ∈ ℂ
341340a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) − (1 / 3)) ∈ ℂ)
342241, 242, 341npncand 10295 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = ((1 / 5) − ((1 / 2) − (1 / 3))))
343 halfthird 11561 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) = (1 / 6)
344343oveq2i 6560 . . . . . . . . . . . . 13 ((1 / 5) − ((1 / 2) − (1 / 3))) = ((1 / 5) − (1 / 6))
345 5recm6rec 11562 . . . . . . . . . . . . 13 ((1 / 5) − (1 / 6)) = (1 / 30)
346344, 345eqtri 2632 . . . . . . . . . . . 12 ((1 / 5) − ((1 / 2) − (1 / 3))) = (1 / 30)
347342, 346syl6eq 2660 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (1 / 30))
348339, 347eqtr3d 2646 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (1 / 30))
349332, 348oveq12d 6567 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
350324, 327, 3493eqtr2d 2650 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
351282, 314, 3503eqtrd 2648 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((𝑋↑2) − (1 / 30)))
352351oveq2d 6565 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
353275, 277, 3523eqtr2d 2650 . . . . 5 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
354262, 272, 3533eqtrd 2648 . . . 4 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
355354oveq2d 6565 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))))
356220, 223subcld 10271 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑4) − (2 · (𝑋↑3))) ∈ ℂ)
357356, 224, 238addsubassd 10291 . . 3 (𝑋 ∈ ℂ → ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
358240, 355, 3573eqtr4d 2654 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
3593, 218, 3583eqtrd 2648 1 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  3c3 10948  4c4 10949  5c5 10950  6c6 10951  ℕ0cn0 11169  ℤcz 11254  ;cdc 11369  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  Ccbc 12951  Σcsu 14264   BernPoly cbp 14616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-bpoly 14617 This theorem is referenced by:  fsumcube  14630
 Copyright terms: Public domain W3C validator