MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Structured version   Visualization version   GIF version

Theorem 3dvds 14890
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁

Proof of Theorem 3dvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 3z 11287 . . 3 3 ∈ ℤ
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∈ ℤ)
3 fzfid 12634 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (0...𝑁) ∈ Fin)
4 ffvelrn 6265 . . . . 5 ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
54adantll 746 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
6 10nn 11390 . . . . . 6 10 ∈ ℕ
76nnzi 11278 . . . . 5 10 ∈ ℤ
8 elfznn0 12302 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
98adantl 481 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
10 zexpcl 12737 . . . . 5 ((10 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℤ)
117, 9, 10sylancr 694 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℤ)
125, 11zmulcld 11364 . . 3 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
133, 12fsumzcl 14313 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
143, 5fsumzcl 14313 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ)
1512, 5zsubcld 11363 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) ∈ ℤ)
16 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
176nncni 10907 . . . . . . . . . . . 12 10 ∈ ℂ
1816, 17negsubdi2i 10246 . . . . . . . . . . 11 -(1 − 10) = (10 − 1)
19 9p1e10 11372 . . . . . . . . . . . . 13 (9 + 1) = 10
2019eqcomi 2619 . . . . . . . . . . . 12 10 = (9 + 1)
2120oveq1i 6559 . . . . . . . . . . 11 (10 − 1) = ((9 + 1) − 1)
22 9cn 10985 . . . . . . . . . . . 12 9 ∈ ℂ
2322, 16pncan3oi 10176 . . . . . . . . . . 11 ((9 + 1) − 1) = 9
2418, 21, 233eqtri 2636 . . . . . . . . . 10 -(1 − 10) = 9
25 3t3e9 11057 . . . . . . . . . 10 (3 · 3) = 9
2624, 25eqtr4i 2635 . . . . . . . . 9 -(1 − 10) = (3 · 3)
2717a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ∈ ℂ)
28 1re 9918 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
29 1lt10 11557 . . . . . . . . . . . . . . . . 17 1 < 10
3028, 29gtneii 10028 . . . . . . . . . . . . . . . 16 10 ≠ 1
3130a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ≠ 1)
32 id 22 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
3327, 31, 32geoser 14438 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) = ((1 − (10↑𝑘)) / (1 − 10)))
34 fzfid 12634 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (0...(𝑘 − 1)) ∈ Fin)
35 elfznn0 12302 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0)
3635adantl 481 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈ ℕ0)
37 zexpcl 12737 . . . . . . . . . . . . . . . 16 ((10 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → (10↑𝑗) ∈ ℤ)
387, 36, 37sylancr 694 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → (10↑𝑗) ∈ ℤ)
3934, 38fsumzcl 14313 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) ∈ ℤ)
4033, 39eqeltrrd 2689 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ)
41 1z 11284 . . . . . . . . . . . . . . 15 1 ∈ ℤ
42 zsubcl 11296 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 10 ∈ ℤ) → (1 − 10) ∈ ℤ)
4341, 7, 42mp2an 704 . . . . . . . . . . . . . 14 (1 − 10) ∈ ℤ
4428, 29ltneii 10029 . . . . . . . . . . . . . . 15 1 ≠ 10
4516, 17subeq0i 10240 . . . . . . . . . . . . . . . 16 ((1 − 10) = 0 ↔ 1 = 10)
4645necon3bii 2834 . . . . . . . . . . . . . . 15 ((1 − 10) ≠ 0 ↔ 1 ≠ 10)
4744, 46mpbir 220 . . . . . . . . . . . . . 14 (1 − 10) ≠ 0
487, 32, 10sylancr 694 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℤ)
49 zsubcl 11296 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ (10↑𝑘) ∈ ℤ) → (1 − (10↑𝑘)) ∈ ℤ)
5041, 48, 49sylancr 694 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 − (10↑𝑘)) ∈ ℤ)
51 dvdsval2 14824 . . . . . . . . . . . . . 14 (((1 − 10) ∈ ℤ ∧ (1 − 10) ≠ 0 ∧ (1 − (10↑𝑘)) ∈ ℤ) → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5243, 47, 50, 51mp3an12i 1420 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5340, 52mpbird 246 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (1 − 10) ∥ (1 − (10↑𝑘)))
5448zcnd 11359 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℂ)
55 negsubdi2 10219 . . . . . . . . . . . . 13 (((10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5654, 16, 55sylancl 693 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5753, 56breqtrrd 4611 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 − 10) ∥ -((10↑𝑘) − 1))
58 peano2zm 11297 . . . . . . . . . . . . 13 ((10↑𝑘) ∈ ℤ → ((10↑𝑘) − 1) ∈ ℤ)
5948, 58syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((10↑𝑘) − 1) ∈ ℤ)
60 dvdsnegb 14837 . . . . . . . . . . . 12 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6143, 59, 60sylancr 694 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6257, 61mpbird 246 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (1 − 10) ∥ ((10↑𝑘) − 1))
63 negdvdsb 14836 . . . . . . . . . . 11 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6443, 59, 63sylancr 694 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6562, 64mpbid 221 . . . . . . . . 9 (𝑘 ∈ ℕ0 → -(1 − 10) ∥ ((10↑𝑘) − 1))
6626, 65syl5eqbrr 4619 . . . . . . . 8 (𝑘 ∈ ℕ0 → (3 · 3) ∥ ((10↑𝑘) − 1))
67 muldvds1 14844 . . . . . . . . 9 ((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
681, 1, 59, 67mp3an12i 1420 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
6966, 68mpd 15 . . . . . . 7 (𝑘 ∈ ℕ0 → 3 ∥ ((10↑𝑘) − 1))
709, 69syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((10↑𝑘) − 1))
7111, 58syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((10↑𝑘) − 1) ∈ ℤ)
72 dvdsmultr2 14859 . . . . . . 7 ((3 ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
731, 5, 71, 72mp3an2i 1421 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
7470, 73mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1)))
755zcnd 11359 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
7611zcnd 11359 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℂ)
7775, 76muls1d 10370 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · ((10↑𝑘) − 1)) = (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
7874, 77breqtrd 4609 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
793, 2, 15, 78fsumdvds 14868 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8012zcnd 11359 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℂ)
813, 80, 75fsumsub 14362 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
8279, 81breqtrd 4609 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
83 dvdssub2 14861 . 2 (((3 ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ) ∧ 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
842, 13, 14, 82, 83syl31anc 1321 1 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  3c3 10948  9c9 10954  0cn0 11169  cz 11254  cdc 11369  ...cfz 12197  cexp 12722  Σcsu 14264  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator