Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   GIF version

Theorem signswch 29964
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswch ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 4128 . . . . . 6 {-1, 1} = ({-1} ∪ {1})
2 snsstp1 4287 . . . . . . 7 {-1} ⊆ {-1, 0, 1}
3 snsstp3 4289 . . . . . . 7 {1} ⊆ {-1, 0, 1}
42, 3unssi 3750 . . . . . 6 ({-1} ∪ {1}) ⊆ {-1, 0, 1}
51, 4eqsstri 3598 . . . . 5 {-1, 1} ⊆ {-1, 0, 1}
65sseli 3564 . . . 4 (𝑋 ∈ {-1, 1} → 𝑋 ∈ {-1, 0, 1})
7 signsw.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
87signspval 29955 . . . 4 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
96, 8sylan 487 . . 3 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
109neeq1d 2841 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
11 neeq1 2844 . . . 4 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1211bibi1d 332 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑋𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
13 neeq1 2844 . . . 4 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1413bibi1d 332 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
15 neirr 2791 . . . . 5 ¬ 𝑋𝑋
1615a1i 11 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ 𝑋𝑋)
17 0re 9919 . . . . . 6 0 ∈ ℝ
1817ltnri 10025 . . . . 5 ¬ 0 < 0
19 simpr 476 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑌 = 0)
2019oveq2d 6565 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
21 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
22 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
23 prssi 4293 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
2421, 22, 23mp2an 704 . . . . . . . . 9 {-1, 1} ⊆ ℂ
25 simpll 786 . . . . . . . . 9 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ {-1, 1})
2624, 25sseldi 3566 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
2726mul01d 10114 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
2820, 27eqtrd 2644 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = 0)
2928breq1d 4593 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ((𝑋 · 𝑌) < 0 ↔ 0 < 0))
3018, 29mtbiri 316 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ (𝑋 · 𝑌) < 0)
3116, 302falsed 365 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋𝑋 ↔ (𝑋 · 𝑌) < 0))
32 simplr 788 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 0, 1})
33 tpcomb 4230 . . . . . . . 8 {-1, 0, 1} = {-1, 1, 0}
3432, 33syl6eleq 2698 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1, 0})
35 simpr 476 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
3635neqned 2789 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
3734, 36jca 553 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
38 eldifsn 4260 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
39 neg1ne0 11003 . . . . . . . . 9 -1 ≠ 0
40 ax-1ne0 9884 . . . . . . . . 9 1 ≠ 0
41 diftpsn3 4273 . . . . . . . . 9 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
4239, 40, 41mp2an 704 . . . . . . . 8 ({-1, 1, 0} ∖ {0}) = {-1, 1}
4342eleq2i 2680 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ 𝑌 ∈ {-1, 1})
4438, 43bitr3i 265 . . . . . 6 ((𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0) ↔ 𝑌 ∈ {-1, 1})
4537, 44sylib 207 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1})
46 neirr 2791 . . . . . . . . . . 11 ¬ -1 ≠ -1
47 0le1 10430 . . . . . . . . . . . . 13 0 ≤ 1
48 1re 9918 . . . . . . . . . . . . . 14 1 ∈ ℝ
4917, 48lenlti 10036 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ ¬ 1 < 0)
5047, 49mpbi 219 . . . . . . . . . . . 12 ¬ 1 < 0
51 neg1mulneg1e1 11122 . . . . . . . . . . . . 13 (-1 · -1) = 1
5251breq1i 4590 . . . . . . . . . . . 12 ((-1 · -1) < 0 ↔ 1 < 0)
5350, 52mtbir 312 . . . . . . . . . . 11 ¬ (-1 · -1) < 0
5446, 532false 364 . . . . . . . . . 10 (-1 ≠ -1 ↔ (-1 · -1) < 0)
55 neeq1 2844 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ -1 ↔ -1 ≠ -1))
56 oveq2 6557 . . . . . . . . . . . 12 (𝑌 = -1 → (-1 · 𝑌) = (-1 · -1))
5756breq1d 4593 . . . . . . . . . . 11 (𝑌 = -1 → ((-1 · 𝑌) < 0 ↔ (-1 · -1) < 0))
5855, 57bibi12d 334 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (-1 ≠ -1 ↔ (-1 · -1) < 0)))
5954, 58mpbiri 247 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
6059adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
61 neg1rr 11002 . . . . . . . . . . . 12 -1 ∈ ℝ
62 neg1lt0 11004 . . . . . . . . . . . . 13 -1 < 0
63 0lt1 10429 . . . . . . . . . . . . 13 0 < 1
6461, 17, 48lttri 10042 . . . . . . . . . . . . 13 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
6562, 63, 64mp2an 704 . . . . . . . . . . . 12 -1 < 1
6661, 65gtneii 10028 . . . . . . . . . . 11 1 ≠ -1
6721mulid1i 9921 . . . . . . . . . . . 12 (-1 · 1) = -1
6867, 62eqbrtri 4604 . . . . . . . . . . 11 (-1 · 1) < 0
6966, 682th 253 . . . . . . . . . 10 (1 ≠ -1 ↔ (-1 · 1) < 0)
70 neeq1 2844 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ -1 ↔ 1 ≠ -1))
71 oveq2 6557 . . . . . . . . . . . 12 (𝑌 = 1 → (-1 · 𝑌) = (-1 · 1))
7271breq1d 4593 . . . . . . . . . . 11 (𝑌 = 1 → ((-1 · 𝑌) < 0 ↔ (-1 · 1) < 0))
7370, 72bibi12d 334 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (1 ≠ -1 ↔ (-1 · 1) < 0)))
7469, 73mpbiri 247 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7574adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
76 elpri 4145 . . . . . . . 8 (𝑌 ∈ {-1, 1} → (𝑌 = -1 ∨ 𝑌 = 1))
7760, 75, 76mpjaodan 823 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7877adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
79 neeq2 2845 . . . . . . . 8 (𝑋 = -1 → (𝑌𝑋𝑌 ≠ -1))
80 oveq1 6556 . . . . . . . . 9 (𝑋 = -1 → (𝑋 · 𝑌) = (-1 · 𝑌))
8180breq1d 4593 . . . . . . . 8 (𝑋 = -1 → ((𝑋 · 𝑌) < 0 ↔ (-1 · 𝑌) < 0))
8279, 81bibi12d 334 . . . . . . 7 (𝑋 = -1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8382adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8478, 83mpbird 246 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8545, 84sylan 487 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8666necomi 2836 . . . . . . . . . . 11 -1 ≠ 1
8721, 22mulcomi 9925 . . . . . . . . . . . . 13 (-1 · 1) = (1 · -1)
8887breq1i 4590 . . . . . . . . . . . 12 ((-1 · 1) < 0 ↔ (1 · -1) < 0)
8968, 88mpbi 219 . . . . . . . . . . 11 (1 · -1) < 0
9086, 892th 253 . . . . . . . . . 10 (-1 ≠ 1 ↔ (1 · -1) < 0)
91 neeq1 2844 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ 1 ↔ -1 ≠ 1))
92 oveq2 6557 . . . . . . . . . . . 12 (𝑌 = -1 → (1 · 𝑌) = (1 · -1))
9392breq1d 4593 . . . . . . . . . . 11 (𝑌 = -1 → ((1 · 𝑌) < 0 ↔ (1 · -1) < 0))
9491, 93bibi12d 334 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (-1 ≠ 1 ↔ (1 · -1) < 0)))
9590, 94mpbiri 247 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
9695adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
97 neirr 2791 . . . . . . . . . . 11 ¬ 1 ≠ 1
9822mulid1i 9921 . . . . . . . . . . . . 13 (1 · 1) = 1
9998breq1i 4590 . . . . . . . . . . . 12 ((1 · 1) < 0 ↔ 1 < 0)
10050, 99mtbir 312 . . . . . . . . . . 11 ¬ (1 · 1) < 0
10197, 1002false 364 . . . . . . . . . 10 (1 ≠ 1 ↔ (1 · 1) < 0)
102 neeq1 2844 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ 1 ↔ 1 ≠ 1))
103 oveq2 6557 . . . . . . . . . . . 12 (𝑌 = 1 → (1 · 𝑌) = (1 · 1))
104103breq1d 4593 . . . . . . . . . . 11 (𝑌 = 1 → ((1 · 𝑌) < 0 ↔ (1 · 1) < 0))
105102, 104bibi12d 334 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (1 ≠ 1 ↔ (1 · 1) < 0)))
106101, 105mpbiri 247 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
107106adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
10896, 107, 76mpjaodan 823 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
109108adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
110 neeq2 2845 . . . . . . . 8 (𝑋 = 1 → (𝑌𝑋𝑌 ≠ 1))
111 oveq1 6556 . . . . . . . . 9 (𝑋 = 1 → (𝑋 · 𝑌) = (1 · 𝑌))
112111breq1d 4593 . . . . . . . 8 (𝑋 = 1 → ((𝑋 · 𝑌) < 0 ↔ (1 · 𝑌) < 0))
113110, 112bibi12d 334 . . . . . . 7 (𝑋 = 1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
114113adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
115109, 114mpbird 246 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
11645, 115sylan 487 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
117 elpri 4145 . . . . 5 (𝑋 ∈ {-1, 1} → (𝑋 = -1 ∨ 𝑋 = 1))
118117ad2antrr 758 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑋 = -1 ∨ 𝑋 = 1))
11985, 116, 118mpjaodan 823 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
12012, 14, 31, 119ifbothda 4073 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
12110, 120bitrd 267 1 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  cun 3538  wss 3540  ifcif 4036  {csn 4125  {cpr 4127  {ctp 4129  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  -cneg 10146  ndxcnx 15692  Basecbs 15695  +gcplusg 15768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by:  signsvfn  29985
  Copyright terms: Public domain W3C validator