Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   Unicode version

Theorem signswch 29522
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsw.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
Assertion
Ref Expression
signswch  |-  ( ( X  e.  { -u
1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  -> 
( ( X  .+^  Y )  =/=  X  <->  ( X  x.  Y )  <  0
) )
Distinct variable groups:    a, b, X    Y, a, b
Allowed substitution hints:    .+^ ( a, b)    W( a, b)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 3962 . . . . . 6  |-  { -u
1 ,  1 }  =  ( { -u
1 }  u.  {
1 } )
2 snsstp1 4114 . . . . . . 7  |-  { -u
1 }  C_  { -u
1 ,  0 ,  1 }
3 snsstp3 4116 . . . . . . 7  |-  { 1 }  C_  { -u 1 ,  0 ,  1 }
42, 3unssi 3600 . . . . . 6  |-  ( {
-u 1 }  u.  { 1 } )  C_  {
-u 1 ,  0 ,  1 }
51, 4eqsstri 3448 . . . . 5  |-  { -u
1 ,  1 } 
C_  { -u 1 ,  0 ,  1 }
65sseli 3414 . . . 4  |-  ( X  e.  { -u 1 ,  1 }  ->  X  e.  { -u 1 ,  0 ,  1 } )
7 signsw.p . . . . 5  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
87signspval 29513 . . . 4  |-  ( ( X  e.  { -u
1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  ->  ( X  .+^ 
Y )  =  if ( Y  =  0 ,  X ,  Y
) )
96, 8sylan 479 . . 3  |-  ( ( X  e.  { -u
1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  -> 
( X  .+^  Y )  =  if ( Y  =  0 ,  X ,  Y ) )
109neeq1d 2702 . 2  |-  ( ( X  e.  { -u
1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  -> 
( ( X  .+^  Y )  =/=  X  <->  if ( Y  =  0 ,  X ,  Y )  =/=  X ) )
11 neeq1 2705 . . . 4  |-  ( X  =  if ( Y  =  0 ,  X ,  Y )  ->  ( X  =/=  X  <->  if ( Y  =  0 ,  X ,  Y )  =/=  X ) )
1211bibi1d 326 . . 3  |-  ( X  =  if ( Y  =  0 ,  X ,  Y )  ->  (
( X  =/=  X  <->  ( X  x.  Y )  <  0 )  <->  ( if ( Y  =  0 ,  X ,  Y )  =/=  X  <->  ( X  x.  Y )  <  0
) ) )
13 neeq1 2705 . . . 4  |-  ( Y  =  if ( Y  =  0 ,  X ,  Y )  ->  ( Y  =/=  X  <->  if ( Y  =  0 ,  X ,  Y )  =/=  X ) )
1413bibi1d 326 . . 3  |-  ( Y  =  if ( Y  =  0 ,  X ,  Y )  ->  (
( Y  =/=  X  <->  ( X  x.  Y )  <  0 )  <->  ( if ( Y  =  0 ,  X ,  Y )  =/=  X  <->  ( X  x.  Y )  <  0
) ) )
15 neirr 2652 . . . . 5  |-  -.  X  =/=  X
1615a1i 11 . . . 4  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  -.  X  =/=  X )
17 0re 9661 . . . . . 6  |-  0  e.  RR
1817ltnri 9761 . . . . 5  |-  -.  0  <  0
19 simpr 468 . . . . . . . 8  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  Y  =  0 )
2019oveq2d 6324 . . . . . . 7  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  ( X  x.  Y )  =  ( X  x.  0 ) )
21 neg1cn 10735 . . . . . . . . . 10  |-  -u 1  e.  CC
22 ax-1cn 9615 . . . . . . . . . 10  |-  1  e.  CC
23 prssi 4119 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  1  e.  CC )  ->  { -u 1 ,  1 }  C_  CC )
2421, 22, 23mp2an 686 . . . . . . . . 9  |-  { -u
1 ,  1 } 
C_  CC
25 simpll 768 . . . . . . . . 9  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  X  e.  { -u 1 ,  1 } )
2624, 25sseldi 3416 . . . . . . . 8  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  X  e.  CC )
2726mul01d 9850 . . . . . . 7  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  ( X  x.  0 )  =  0 )
2820, 27eqtrd 2505 . . . . . 6  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  ( X  x.  Y )  =  0 )
2928breq1d 4405 . . . . 5  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  ( ( X  x.  Y )  <  0  <->  0  <  0
) )
3018, 29mtbiri 310 . . . 4  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  -.  ( X  x.  Y )  <  0
)
3116, 302falsed 358 . . 3  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  Y  =  0 )  ->  ( X  =/= 
X  <->  ( X  x.  Y )  <  0
) )
32 simplr 770 . . . . . . . 8  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  Y  e.  {
-u 1 ,  0 ,  1 } )
33 tpcomb 4060 . . . . . . . 8  |-  { -u
1 ,  0 ,  1 }  =  { -u 1 ,  1 ,  0 }
3432, 33syl6eleq 2559 . . . . . . 7  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  Y  e.  {
-u 1 ,  1 ,  0 } )
35 simpr 468 . . . . . . . 8  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  -.  Y  =  0 )
3635neqned 2650 . . . . . . 7  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  Y  =/=  0 )
3734, 36jca 541 . . . . . 6  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  ( Y  e.  { -u 1 ,  1 ,  0 }  /\  Y  =/=  0
) )
38 eldifsn 4088 . . . . . . 7  |-  ( Y  e.  ( { -u
1 ,  1 ,  0 }  \  {
0 } )  <->  ( Y  e.  { -u 1 ,  1 ,  0 }  /\  Y  =/=  0
) )
39 neg1ne0 10737 . . . . . . . . 9  |-  -u 1  =/=  0
40 ax-1ne0 9626 . . . . . . . . 9  |-  1  =/=  0
41 diftpsn3 4101 . . . . . . . . 9  |-  ( (
-u 1  =/=  0  /\  1  =/=  0
)  ->  ( { -u 1 ,  1 ,  0 }  \  {
0 } )  =  { -u 1 ,  1 } )
4239, 40, 41mp2an 686 . . . . . . . 8  |-  ( {
-u 1 ,  1 ,  0 }  \  { 0 } )  =  { -u 1 ,  1 }
4342eleq2i 2541 . . . . . . 7  |-  ( Y  e.  ( { -u
1 ,  1 ,  0 }  \  {
0 } )  <->  Y  e.  {
-u 1 ,  1 } )
4438, 43bitr3i 259 . . . . . 6  |-  ( ( Y  e.  { -u
1 ,  1 ,  0 }  /\  Y  =/=  0 )  <->  Y  e.  {
-u 1 ,  1 } )
4537, 44sylib 201 . . . . 5  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  Y  e.  {
-u 1 ,  1 } )
46 neirr 2652 . . . . . . . . . . 11  |-  -.  -u 1  =/=  -u 1
47 0le1 10158 . . . . . . . . . . . . 13  |-  0  <_  1
48 1re 9660 . . . . . . . . . . . . . 14  |-  1  e.  RR
4917, 48lenlti 9772 . . . . . . . . . . . . 13  |-  ( 0  <_  1  <->  -.  1  <  0 )
5047, 49mpbi 213 . . . . . . . . . . . 12  |-  -.  1  <  0
51 neg1mulneg1e1 10850 . . . . . . . . . . . . 13  |-  ( -u
1  x.  -u 1
)  =  1
5251breq1i 4402 . . . . . . . . . . . 12  |-  ( (
-u 1  x.  -u 1
)  <  0  <->  1  <  0 )
5350, 52mtbir 306 . . . . . . . . . . 11  |-  -.  ( -u 1  x.  -u 1
)  <  0
5446, 532false 357 . . . . . . . . . 10  |-  ( -u
1  =/=  -u 1  <->  (
-u 1  x.  -u 1
)  <  0 )
55 neeq1 2705 . . . . . . . . . . 11  |-  ( Y  =  -u 1  ->  ( Y  =/=  -u 1  <->  -u 1  =/=  -u 1 ) )
56 oveq2 6316 . . . . . . . . . . . 12  |-  ( Y  =  -u 1  ->  ( -u 1  x.  Y )  =  ( -u 1  x.  -u 1 ) )
5756breq1d 4405 . . . . . . . . . . 11  |-  ( Y  =  -u 1  ->  (
( -u 1  x.  Y
)  <  0  <->  ( -u 1  x.  -u 1 )  <  0 ) )
5855, 57bibi12d 328 . . . . . . . . . 10  |-  ( Y  =  -u 1  ->  (
( Y  =/=  -u 1  <->  (
-u 1  x.  Y
)  <  0 )  <-> 
( -u 1  =/=  -u 1  <->  (
-u 1  x.  -u 1
)  <  0 ) ) )
5954, 58mpbiri 241 . . . . . . . . 9  |-  ( Y  =  -u 1  ->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) )
6059adantl 473 . . . . . . . 8  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  Y  =  -u
1 )  ->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) )
61 neg1rr 10736 . . . . . . . . . . . 12  |-  -u 1  e.  RR
62 neg1lt0 10738 . . . . . . . . . . . . 13  |-  -u 1  <  0
63 0lt1 10157 . . . . . . . . . . . . 13  |-  0  <  1
6461, 17, 48lttri 9778 . . . . . . . . . . . . 13  |-  ( (
-u 1  <  0  /\  0  <  1
)  ->  -u 1  <  1 )
6562, 63, 64mp2an 686 . . . . . . . . . . . 12  |-  -u 1  <  1
6661, 65gtneii 9764 . . . . . . . . . . 11  |-  1  =/=  -u 1
6721mulid1i 9663 . . . . . . . . . . . 12  |-  ( -u
1  x.  1 )  =  -u 1
6867, 62eqbrtri 4415 . . . . . . . . . . 11  |-  ( -u
1  x.  1 )  <  0
6966, 682th 247 . . . . . . . . . 10  |-  ( 1  =/=  -u 1  <->  ( -u 1  x.  1 )  <  0
)
70 neeq1 2705 . . . . . . . . . . 11  |-  ( Y  =  1  ->  ( Y  =/=  -u 1  <->  1  =/=  -u 1 ) )
71 oveq2 6316 . . . . . . . . . . . 12  |-  ( Y  =  1  ->  ( -u 1  x.  Y )  =  ( -u 1  x.  1 ) )
7271breq1d 4405 . . . . . . . . . . 11  |-  ( Y  =  1  ->  (
( -u 1  x.  Y
)  <  0  <->  ( -u 1  x.  1 )  <  0
) )
7370, 72bibi12d 328 . . . . . . . . . 10  |-  ( Y  =  1  ->  (
( Y  =/=  -u 1  <->  (
-u 1  x.  Y
)  <  0 )  <-> 
( 1  =/=  -u 1  <->  (
-u 1  x.  1 )  <  0 ) ) )
7469, 73mpbiri 241 . . . . . . . . 9  |-  ( Y  =  1  ->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) )
7574adantl 473 . . . . . . . 8  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  Y  =  1 )  ->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) )
76 elpri 3976 . . . . . . . 8  |-  ( Y  e.  { -u 1 ,  1 }  ->  ( Y  =  -u 1  \/  Y  =  1
) )
7760, 75, 76mpjaodan 803 . . . . . . 7  |-  ( Y  e.  { -u 1 ,  1 }  ->  ( Y  =/=  -u 1  <->  (
-u 1  x.  Y
)  <  0 ) )
7877adantr 472 . . . . . 6  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  -u
1 )  ->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) )
79 neeq2 2706 . . . . . . . 8  |-  ( X  =  -u 1  ->  ( Y  =/=  X  <->  Y  =/=  -u 1 ) )
80 oveq1 6315 . . . . . . . . 9  |-  ( X  =  -u 1  ->  ( X  x.  Y )  =  ( -u 1  x.  Y ) )
8180breq1d 4405 . . . . . . . 8  |-  ( X  =  -u 1  ->  (
( X  x.  Y
)  <  0  <->  ( -u 1  x.  Y )  <  0
) )
8279, 81bibi12d 328 . . . . . . 7  |-  ( X  =  -u 1  ->  (
( Y  =/=  X  <->  ( X  x.  Y )  <  0 )  <->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) ) )
8382adantl 473 . . . . . 6  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  -u
1 )  ->  (
( Y  =/=  X  <->  ( X  x.  Y )  <  0 )  <->  ( Y  =/=  -u 1  <->  ( -u 1  x.  Y )  <  0
) ) )
8478, 83mpbird 240 . . . . 5  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  -u
1 )  ->  ( Y  =/=  X  <->  ( X  x.  Y )  <  0
) )
8545, 84sylan 479 . . . 4  |-  ( ( ( ( X  e. 
{ -u 1 ,  1 }  /\  Y  e. 
{ -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0 )  /\  X  =  -u 1 )  -> 
( Y  =/=  X  <->  ( X  x.  Y )  <  0 ) )
8666necomi 2697 . . . . . . . . . . 11  |-  -u 1  =/=  1
8721, 22mulcomi 9667 . . . . . . . . . . . . 13  |-  ( -u
1  x.  1 )  =  ( 1  x.  -u 1 )
8887breq1i 4402 . . . . . . . . . . . 12  |-  ( (
-u 1  x.  1 )  <  0  <->  (
1  x.  -u 1
)  <  0 )
8968, 88mpbi 213 . . . . . . . . . . 11  |-  ( 1  x.  -u 1 )  <  0
9086, 892th 247 . . . . . . . . . 10  |-  ( -u
1  =/=  1  <->  (
1  x.  -u 1
)  <  0 )
91 neeq1 2705 . . . . . . . . . . 11  |-  ( Y  =  -u 1  ->  ( Y  =/=  1  <->  -u 1  =/=  1 ) )
92 oveq2 6316 . . . . . . . . . . . 12  |-  ( Y  =  -u 1  ->  (
1  x.  Y )  =  ( 1  x.  -u 1 ) )
9392breq1d 4405 . . . . . . . . . . 11  |-  ( Y  =  -u 1  ->  (
( 1  x.  Y
)  <  0  <->  ( 1  x.  -u 1 )  <  0 ) )
9491, 93bibi12d 328 . . . . . . . . . 10  |-  ( Y  =  -u 1  ->  (
( Y  =/=  1  <->  ( 1  x.  Y )  <  0 )  <->  ( -u 1  =/=  1  <->  ( 1  x.  -u 1 )  <  0 ) ) )
9590, 94mpbiri 241 . . . . . . . . 9  |-  ( Y  =  -u 1  ->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0 ) )
9695adantl 473 . . . . . . . 8  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  Y  =  -u
1 )  ->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0 ) )
97 neirr 2652 . . . . . . . . . . 11  |-  -.  1  =/=  1
9822mulid1i 9663 . . . . . . . . . . . . 13  |-  ( 1  x.  1 )  =  1
9998breq1i 4402 . . . . . . . . . . . 12  |-  ( ( 1  x.  1 )  <  0  <->  1  <  0 )
10050, 99mtbir 306 . . . . . . . . . . 11  |-  -.  (
1  x.  1 )  <  0
10197, 1002false 357 . . . . . . . . . 10  |-  ( 1  =/=  1  <->  ( 1  x.  1 )  <  0 )
102 neeq1 2705 . . . . . . . . . . 11  |-  ( Y  =  1  ->  ( Y  =/=  1  <->  1  =/=  1 ) )
103 oveq2 6316 . . . . . . . . . . . 12  |-  ( Y  =  1  ->  (
1  x.  Y )  =  ( 1  x.  1 ) )
104103breq1d 4405 . . . . . . . . . . 11  |-  ( Y  =  1  ->  (
( 1  x.  Y
)  <  0  <->  ( 1  x.  1 )  <  0 ) )
105102, 104bibi12d 328 . . . . . . . . . 10  |-  ( Y  =  1  ->  (
( Y  =/=  1  <->  ( 1  x.  Y )  <  0 )  <->  ( 1  =/=  1  <->  ( 1  x.  1 )  <  0 ) ) )
106101, 105mpbiri 241 . . . . . . . . 9  |-  ( Y  =  1  ->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0 ) )
107106adantl 473 . . . . . . . 8  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  Y  =  1 )  ->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0
) )
10896, 107, 76mpjaodan 803 . . . . . . 7  |-  ( Y  e.  { -u 1 ,  1 }  ->  ( Y  =/=  1  <->  (
1  x.  Y )  <  0 ) )
109108adantr 472 . . . . . 6  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  1 )  ->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0
) )
110 neeq2 2706 . . . . . . . 8  |-  ( X  =  1  ->  ( Y  =/=  X  <->  Y  =/=  1 ) )
111 oveq1 6315 . . . . . . . . 9  |-  ( X  =  1  ->  ( X  x.  Y )  =  ( 1  x.  Y ) )
112111breq1d 4405 . . . . . . . 8  |-  ( X  =  1  ->  (
( X  x.  Y
)  <  0  <->  ( 1  x.  Y )  <  0 ) )
113110, 112bibi12d 328 . . . . . . 7  |-  ( X  =  1  ->  (
( Y  =/=  X  <->  ( X  x.  Y )  <  0 )  <->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0
) ) )
114113adantl 473 . . . . . 6  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  1 )  ->  ( ( Y  =/=  X  <->  ( X  x.  Y )  <  0
)  <->  ( Y  =/=  1  <->  ( 1  x.  Y )  <  0
) ) )
115109, 114mpbird 240 . . . . 5  |-  ( ( Y  e.  { -u
1 ,  1 }  /\  X  =  1 )  ->  ( Y  =/=  X  <->  ( X  x.  Y )  <  0
) )
11645, 115sylan 479 . . . 4  |-  ( ( ( ( X  e. 
{ -u 1 ,  1 }  /\  Y  e. 
{ -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0 )  /\  X  =  1 )  -> 
( Y  =/=  X  <->  ( X  x.  Y )  <  0 ) )
117 elpri 3976 . . . . 5  |-  ( X  e.  { -u 1 ,  1 }  ->  ( X  =  -u 1  \/  X  =  1
) )
118117ad2antrr 740 . . . 4  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  ( X  =  -u 1  \/  X  =  1 ) )
11985, 116, 118mpjaodan 803 . . 3  |-  ( ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  -.  Y  =  0
)  ->  ( Y  =/=  X  <->  ( X  x.  Y )  <  0
) )
12012, 14, 31, 119ifbothda 3907 . 2  |-  ( ( X  e.  { -u
1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  -> 
( if ( Y  =  0 ,  X ,  Y )  =/=  X  <->  ( X  x.  Y )  <  0 ) )
12110, 120bitrd 261 1  |-  ( ( X  e.  { -u
1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  -> 
( ( X  .+^  Y )  =/=  X  <->  ( X  x.  Y )  <  0
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641    \ cdif 3387    u. cun 3388    C_ wss 3390   ifcif 3872   {csn 3959   {cpr 3961   {ctp 3963   <.cop 3965   class class class wbr 4395   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   CCcc 9555   0cc0 9557   1c1 9558    x. cmul 9562    < clt 9693    <_ cle 9694   -ucneg 9881   ndxcnx 15196   Basecbs 15199   +g cplusg 15268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-po 4760  df-so 4761  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883
This theorem is referenced by:  signsvfn  29543
  Copyright terms: Public domain W3C validator