Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2lem1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2lem1 40016
Description: Lemma for fmtnoprmfac2 40017. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2lem1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)

Proof of Theorem fmtnoprmfac2lem1
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 11602 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eldifi 3694 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3 id 22 . . 3 (𝑃 ∥ (FermatNo‘𝑁) → 𝑃 ∥ (FermatNo‘𝑁))
4 fmtnoprmfac1 40015 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
51, 2, 3, 4syl3an 1360 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1))
6 2z 11286 . . . . . . 7 2 ∈ ℤ
7 simp2 1055 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ (ℙ ∖ {2}))
8 lgsvalmod 24841 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
98eqcomd 2616 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
106, 7, 9sylancr 694 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
1110ad2antrr 758 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
12 nncn 10905 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
14 2nn 11062 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
1514a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
16 eluzge2nn0 11603 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
17 peano2nn0 11210 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
1915, 18nnexpcld 12892 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
2019nncnd 10913 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
2120adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
2213, 21mulcomd 9940 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = ((2↑(𝑁 + 1)) · 𝑛))
23 8cn 10983 . . . . . . . . . . . . . . . . 17 8 ∈ ℂ
2423a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ∈ ℂ)
25 0re 9919 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
26 8pos 10998 . . . . . . . . . . . . . . . . . 18 0 < 8
2725, 26gtneii 10028 . . . . . . . . . . . . . . . . 17 8 ≠ 0
2827a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 8 ≠ 0)
2921, 24, 28divcan2d 10682 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (8 · ((2↑(𝑁 + 1)) / 8)) = (2↑(𝑁 + 1)))
3029eqcomd 2616 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (2↑(𝑁 + 1)) = (8 · ((2↑(𝑁 + 1)) / 8)))
3130oveq1d 6564 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) · 𝑛) = ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛))
3223a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 8 ∈ ℂ)
3327a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 8 ≠ 0)
3420, 32, 33divcld 10680 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3534adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℂ)
3624, 35, 13mulassd 9942 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((8 · ((2↑(𝑁 + 1)) / 8)) · 𝑛) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3722, 31, 363eqtrd 2648 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑛 · (2↑(𝑁 + 1))) = (8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)))
3837oveq1d 6564 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (2↑(𝑁 + 1))) + 1) = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1))
3938eqeq2d 2620 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) ↔ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)))
40 oveq1 6556 . . . . . . . . . . . . 13 (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
4140adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) = (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8))
42 3m1e2 11014 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 − 1) = 2
43 eluzle 11576 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
4442, 43syl5eqbr 4618 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (3 − 1) ≤ 𝑁)
45 3re 10971 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℝ)
47 1red 9934 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
48 eluzelre 11574 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
4946, 47, 48lesubaddd 10503 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → ((3 − 1) ≤ 𝑁 ↔ 3 ≤ (𝑁 + 1)))
5044, 49mpbid 221 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 3 ≤ (𝑁 + 1))
51 3nn0 11187 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℕ0
52 nn0sub 11220 . . . . . . . . . . . . . . . . . . . . . . 23 ((3 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5351, 18, 52sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (3 ≤ (𝑁 + 1) ↔ ((𝑁 + 1) − 3) ∈ ℕ0))
5450, 53mpbid 221 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) − 3) ∈ ℕ0)
5515, 54nnexpcld 12892 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℕ)
5655nnzd 11357 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) ∈ ℤ)
57 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (2↑((𝑁 + 1) − 3)) → (8 · 𝑘) = (8 · (2↑((𝑁 + 1) − 3))))
5857eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (2↑((𝑁 + 1) − 3)) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
5958adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = (2↑((𝑁 + 1) − 3))) → ((8 · 𝑘) = (2↑(𝑁 + 1)) ↔ (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1))))
60 cu2 12825 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑3) = 8
6160eqcomi 2619 . . . . . . . . . . . . . . . . . . . . . 22 8 = (2↑3)
6261a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 8 = (2↑3))
63 2cnne0 11119 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℂ ∧ 2 ≠ 0)
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
65 eluzelz 11573 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
6665peano2zd 11361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℤ)
67 3z 11287 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 3 ∈ ℤ)
69 expsub 12770 . . . . . . . . . . . . . . . . . . . . . 22 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ 3 ∈ ℤ)) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7064, 66, 68, 69syl12anc 1316 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) − 3)) = ((2↑(𝑁 + 1)) / (2↑3)))
7162, 70oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))))
72 nnexpcl 12735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℕ ∧ 3 ∈ ℕ0) → (2↑3) ∈ ℕ)
7314, 51, 72mp2an 704 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑3) ∈ ℕ
7473nncni 10907 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ∈ ℂ
7574a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑3) ∈ ℂ)
76 2cn 10968 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
77 2ne0 10990 . . . . . . . . . . . . . . . . . . . . . . 23 2 ≠ 0
78 expne0i 12754 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 3 ∈ ℤ) → (2↑3) ≠ 0)
7976, 77, 67, 78mp3an 1416 . . . . . . . . . . . . . . . . . . . . . 22 (2↑3) ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑3) ≠ 0)
8120, 75, 80divcan2d 10682 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → ((2↑3) · ((2↑(𝑁 + 1)) / (2↑3))) = (2↑(𝑁 + 1)))
8271, 81eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (8 · (2↑((𝑁 + 1) − 3))) = (2↑(𝑁 + 1)))
8356, 59, 82rspcedvd 3289 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)))
84 8nn 11068 . . . . . . . . . . . . . . . . . . 19 8 ∈ ℕ
85 2nn0 11186 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
8786, 18nn0expcld 12893 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
8887nn0zd 11356 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℤ)
89 zdiv 11323 . . . . . . . . . . . . . . . . . . 19 ((8 ∈ ℕ ∧ (2↑(𝑁 + 1)) ∈ ℤ) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9084, 88, 89sylancr 694 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (∃𝑘 ∈ ℤ (8 · 𝑘) = (2↑(𝑁 + 1)) ↔ ((2↑(𝑁 + 1)) / 8) ∈ ℤ))
9183, 90mpbid 221 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → ((2↑(𝑁 + 1)) / 8) ∈ ℤ)
93 nnz 11276 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
9493adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
9592, 94zmulcld 11364 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ)
9684nnzi 11278 . . . . . . . . . . . . . . . 16 8 ∈ ℤ
97 2re 10967 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
98 8re 10982 . . . . . . . . . . . . . . . . 17 8 ∈ ℝ
99 2lt8 11097 . . . . . . . . . . . . . . . . 17 2 < 8
10097, 98, 99ltleii 10039 . . . . . . . . . . . . . . . 16 2 ≤ 8
101 eluz2 11569 . . . . . . . . . . . . . . . 16 (8 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 8 ∈ ℤ ∧ 2 ≤ 8))
1026, 96, 100, 101mpbir3an 1237 . . . . . . . . . . . . . . 15 8 ∈ (ℤ‘2)
103 mulp1mod1 12573 . . . . . . . . . . . . . . 15 (((((2↑(𝑁 + 1)) / 8) · 𝑛) ∈ ℤ ∧ 8 ∈ (ℤ‘2)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
10495, 102, 103sylancl 693 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) = 1)
105 1nn 10908 . . . . . . . . . . . . . . 15 1 ∈ ℕ
106 prid1g 4239 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → 1 ∈ {1, 7})
107105, 106mp1i 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → 1 ∈ {1, 7})
108104, 107eqeltrd 2688 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
109108adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) mod 8) ∈ {1, 7})
11041, 109eqeltrd 2688 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1)) → (𝑃 mod 8) ∈ {1, 7})
111110ex 449 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((8 · (((2↑(𝑁 + 1)) / 8) · 𝑛)) + 1) → (𝑃 mod 8) ∈ {1, 7}))
11239, 111sylbid 229 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
1131123ad2antl1 1216 . . . . . . . 8 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → (𝑃 mod 8) ∈ {1, 7}))
114113imp 444 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (𝑃 mod 8) ∈ {1, 7})
115 2lgs 24932 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1162, 115syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
1171163ad2ant2 1076 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
118117ad2antrr 758 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
119114, 118mpbird 246 . . . . . 6 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (2 /L 𝑃) = 1)
120119oveq1d 6564 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
121 prmuz2 15246 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
122 eluzelre 11574 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
123 eluz2gt1 11636 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
124122, 123jca 553 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
125121, 124syl 17 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
126 1mod 12564 . . . . . . . 8 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1272, 125, 1263syl 18 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
1281273ad2ant2 1076 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (1 mod 𝑃) = 1)
129128ad2antrr 758 . . . . 5 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → (1 mod 𝑃) = 1)
13011, 120, 1293eqtrd 2648 . . . 4 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
131130ex 449 . . 3 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
132131rexlimdva 3013 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ 𝑃 = ((𝑛 · (2↑(𝑁 + 1))) + 1) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1))
1335, 132mpd 15 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  {csn 4125  {cpr 4127   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  7c7 10952  8c8 10953  0cn0 11169  cz 11254  cuz 11563   mod cmo 12530  cexp 12722  cdvds 14821  cprime 15223   /L clgs 24819  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-prm 15224  df-odz 15308  df-phi 15309  df-pc 15380  df-lgs 24820  df-fmtno 39978
This theorem is referenced by:  fmtnoprmfac2  40017
  Copyright terms: Public domain W3C validator