Proof of Theorem ballotlemi1
Step | Hyp | Ref
| Expression |
1 | | 0re 9919 |
. . . . . . 7
⊢ 0 ∈
ℝ |
2 | | 1re 9918 |
. . . . . . 7
⊢ 1 ∈
ℝ |
3 | 1, 2 | resubcli 10222 |
. . . . . 6
⊢ (0
− 1) ∈ ℝ |
4 | | 0lt1 10429 |
. . . . . . 7
⊢ 0 <
1 |
5 | | ltsub23 10387 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0
− 1) < 0 ↔ (0 − 0) < 1)) |
6 | 1, 2, 1, 5 | mp3an 1416 |
. . . . . . . 8
⊢ ((0
− 1) < 0 ↔ (0 − 0) < 1) |
7 | | 0m0e0 11007 |
. . . . . . . . 9
⊢ (0
− 0) = 0 |
8 | 7 | breq1i 4590 |
. . . . . . . 8
⊢ ((0
− 0) < 1 ↔ 0 < 1) |
9 | 6, 8 | bitr2i 264 |
. . . . . . 7
⊢ (0 < 1
↔ (0 − 1) < 0) |
10 | 4, 9 | mpbi 219 |
. . . . . 6
⊢ (0
− 1) < 0 |
11 | 3, 10 | gtneii 10028 |
. . . . 5
⊢ 0 ≠ (0
− 1) |
12 | 11 | nesymi 2839 |
. . . 4
⊢ ¬ (0
− 1) = 0 |
13 | | ballotth.m |
. . . . . . . . 9
⊢ 𝑀 ∈ ℕ |
14 | | ballotth.n |
. . . . . . . . 9
⊢ 𝑁 ∈ ℕ |
15 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
16 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
17 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
18 | | eldifi 3694 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) |
19 | | 1nn 10908 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
21 | 13, 14, 15, 16, 17, 18, 20 | ballotlemfp1 29880 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1
∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) +
1)))) |
22 | 21 | simpld 474 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) −
1))) |
23 | 22 | imp 444 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) −
1)) |
24 | | 1m1e0 10966 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
25 | 24 | fveq2i 6106 |
. . . . . . . 8
⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
26 | 25 | oveq1i 6559 |
. . . . . . 7
⊢ (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1) |
27 | 26 | a1i 11 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1)) |
28 | 13, 14, 15, 16, 17 | ballotlemfval0 29884 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
29 | 18, 28 | syl 17 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
31 | 30 | oveq1d 6564 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) − 1) = (0 −
1)) |
32 | 23, 27, 31 | 3eqtrrd 2649 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹‘𝐶)‘1)) |
33 | 32 | eqeq1d 2612 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
34 | 12, 33 | mtbii 315 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
35 | | ballotth.e |
. . . . . . 7
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
36 | | ballotth.mgtn |
. . . . . . 7
⊢ 𝑁 < 𝑀 |
37 | | ballotth.i |
. . . . . . 7
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
38 | 13, 14, 15, 16, 17, 35, 36, 37 | ballotlemiex 29890 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
39 | 38 | simprd 478 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
40 | 39 | ad2antrr 758 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
41 | | fveq2 6103 |
. . . . . 6
⊢ ((𝐼‘𝐶) = 1 → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = ((𝐹‘𝐶)‘1)) |
42 | 41 | eqeq1d 2612 |
. . . . 5
⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
43 | 42 | adantl 481 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
44 | 40, 43 | mpbid 221 |
. . 3
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
45 | 34, 44 | mtand 689 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
46 | 45 | neqned 2789 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |