Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemi1 Structured version   Visualization version   GIF version

Theorem ballotlemi1 29891
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemi1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemi1
StepHypRef Expression
1 0re 9919 . . . . . . 7 0 ∈ ℝ
2 1re 9918 . . . . . . 7 1 ∈ ℝ
31, 2resubcli 10222 . . . . . 6 (0 − 1) ∈ ℝ
4 0lt1 10429 . . . . . . 7 0 < 1
5 ltsub23 10387 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ (0 − 0) < 1))
61, 2, 1, 5mp3an 1416 . . . . . . . 8 ((0 − 1) < 0 ↔ (0 − 0) < 1)
7 0m0e0 11007 . . . . . . . . 9 (0 − 0) = 0
87breq1i 4590 . . . . . . . 8 ((0 − 0) < 1 ↔ 0 < 1)
96, 8bitr2i 264 . . . . . . 7 (0 < 1 ↔ (0 − 1) < 0)
104, 9mpbi 219 . . . . . 6 (0 − 1) < 0
113, 10gtneii 10028 . . . . 5 0 ≠ (0 − 1)
1211nesymi 2839 . . . 4 ¬ (0 − 1) = 0
13 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
14 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
15 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
16 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
17 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
18 eldifi 3694 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
19 1nn 10908 . . . . . . . . . 10 1 ∈ ℕ
2019a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
2113, 14, 15, 16, 17, 18, 20ballotlemfp1 29880 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
2221simpld 474 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
2322imp 444 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
24 1m1e0 10966 . . . . . . . . 9 (1 − 1) = 0
2524fveq2i 6106 . . . . . . . 8 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
2625oveq1i 6559 . . . . . . 7 (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1)
2726a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1))
2813, 14, 15, 16, 17ballotlemfval0 29884 . . . . . . . . 9 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2918, 28syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
3029adantr 480 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
3130oveq1d 6564 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) − 1) = (0 − 1))
3223, 27, 313eqtrrd 2649 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘1))
3332eqeq1d 2612 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3412, 33mtbii 315 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹𝐶)‘1) = 0)
35 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
36 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
37 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
3813, 14, 15, 16, 17, 35, 36, 37ballotlemiex 29890 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
3938simprd 478 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
4039ad2antrr 758 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
41 fveq2 6103 . . . . . 6 ((𝐼𝐶) = 1 → ((𝐹𝐶)‘(𝐼𝐶)) = ((𝐹𝐶)‘1))
4241eqeq1d 2612 . . . . 5 ((𝐼𝐶) = 1 → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
4342adantl 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
4440, 43mpbid 221 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘1) = 0)
4534, 44mtand 689 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼𝐶) = 1)
4645neqned 2789 1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  cin 3539  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145   / cdiv 10563  cn 10897  cz 11254  ...cfz 12197  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  ballotlemic  29895
  Copyright terms: Public domain W3C validator