Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum Structured version   Visualization version   GIF version

Theorem geo2sum 14443
 Description: The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem geo2sum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 11285 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℤ)
2 nnz 11276 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℤ)
4 simplr 788 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ)
5 2nn 11062 . . . . . 6 2 ∈ ℕ
6 elfznn 12241 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 481 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnnn0d 11228 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
9 nnexpcl 12735 . . . . . 6 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
105, 8, 9sylancr 694 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ)
1110nncnd 10913 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ)
1210nnne0d 10942 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ≠ 0)
134, 11, 12divcld 10680 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ)
14 oveq2 6557 . . . 4 (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1)))
1514oveq2d 6565 . . 3 (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1))))
161, 1, 3, 13, 15fsumshftm 14355 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))))
17 1m1e0 10966 . . . . 5 (1 − 1) = 0
1817oveq1i 6559 . . . 4 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1918sumeq1i 14276 . . 3 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))
20 halfcn 11124 . . . . . . . . . 10 (1 / 2) ∈ ℂ
21 elfznn0 12302 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
2221adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
23 expcl 12740 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ)
2420, 22, 23sylancr 694 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈ ℂ)
25 2cnd 10970 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈ ℂ)
26 2ne0 10990 . . . . . . . . . 10 2 ≠ 0
2726a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ≠ 0)
2824, 25, 27divrecd 10683 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 / 2)))
29 expp1 12729 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
3020, 22, 29sylancr 694 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2)))
31 elfzelz 12213 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
3231peano2zd 11361 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ)
3332adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ)
3425, 27, 33exprecd 12878 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1))))
3528, 30, 343eqtr2rd 2651 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2))
3635oveq2d 6565 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
37 simplr 788 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
38 peano2nn0 11210 . . . . . . . . . 10 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
3922, 38syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
40 nnexpcl 12735 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
415, 39, 40sylancr 694 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℕ)
4241nncnd 10913 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈ ℂ)
4341nnne0d 10942 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ≠ 0)
4437, 42, 43divrecd 10683 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1)))))
4524, 37, 25, 27div12d 10716 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2)))
4636, 44, 453eqtr4d 2654 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2)))
4746sumeq2dv 14281 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
48 fzfid 12634 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
49 halfcl 11134 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
5049adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈ ℂ)
5148, 50, 24fsummulc1 14359 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2)))
5247, 51eqtr4d 2647 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
5319, 52syl5eq 2656 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)))
54 2cnd 10970 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈ ℂ)
5526a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ≠ 0)
5654, 55, 3exprecd 12878 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 / 2)↑𝑁) = (1 / (2↑𝑁)))
5756oveq2d 6565 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − ((1 / 2)↑𝑁)) = (1 − (1 / (2↑𝑁))))
58 1mhlfehlf 11128 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
5958a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / 2)) = (1 / 2))
6057, 59oveq12d 6567 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2)))
61 simpr 476 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
6261, 54, 55divrec2d 10684 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴))
6360, 62oveq12d 6567 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
64 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
65 nnnn0 11176 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6665adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈ ℕ0)
67 nnexpcl 12735 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
685, 66, 67sylancr 694 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℕ)
6968nnrecred 10943 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℝ)
7069recnd 9947 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / (2↑𝑁)) ∈ ℂ)
71 subcl 10159 . . . . . . 7 ((1 ∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7264, 70, 71sylancr 694 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 − (1 / (2↑𝑁))) ∈ ℂ)
7320a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ∈ ℂ)
74 0re 9919 . . . . . . . 8 0 ∈ ℝ
75 halfgt0 11125 . . . . . . . 8 0 < (1 / 2)
7674, 75gtneii 10028 . . . . . . 7 (1 / 2) ≠ 0
7776a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ≠ 0)
7872, 73, 77divcld 10680 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) / (1 / 2)) ∈ ℂ)
7978, 73, 61mulassd 9942 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2) · 𝐴)))
8072, 73, 77divcan1d 10681 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁))))
8180oveq1d 6564 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1 − (1 / (2↑𝑁))) / (1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴))
8263, 79, 813eqtr2d 2650 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴))
83 halfre 11123 . . . . . . 7 (1 / 2) ∈ ℝ
84 halflt1 11127 . . . . . . 7 (1 / 2) < 1
8583, 84ltneii 10029 . . . . . 6 (1 / 2) ≠ 1
8685a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2) ≠ 1)
8773, 86, 66geoser 14438 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))))
8887oveq1d 6564 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 / 2)↑𝑁)) / (1 − (1 / 2))) · (𝐴 / 2)))
89 mulid2 9917 . . . . . . 7 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
9089adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
9190eqcomd 2616 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴))
9268nncnd 10913 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ∈ ℂ)
9368nnne0d 10942 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (2↑𝑁) ≠ 0)
9461, 92, 93divrec2d 10684 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴))
9591, 94oveq12d 6567 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9664a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
9796, 70, 61subdird 10366 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 − (1 / (2↑𝑁))) · 𝐴) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴)))
9895, 97eqtr4d 2647 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴))
9982, 88, 983eqtr4d 2654 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁))))
10016, 53, 993eqtrd 2648 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ...cfz 12197  ↑cexp 12722  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  geo2lim  14445  ovollb2lem  23063  ovoliunlem1  23077
 Copyright terms: Public domain W3C validator