Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnnbi | Structured version Visualization version GIF version |
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnnbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2614 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1)) | |
3 | 2 | imbi1d 330 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0))) |
4 | eqeq1 2614 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1)) | |
5 | 4 | imbi1d 330 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0))) |
6 | eqeq1 2614 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1)) | |
7 | 6 | imbi1d 330 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0))) |
8 | neg1ne0 11003 | . . . . . . 7 ⊢ -1 ≠ 0 | |
9 | 8 | nesymi 2839 | . . . . . 6 ⊢ ¬ 0 = -1 |
10 | 9 | pm2.21i 115 | . . . . 5 ⊢ (0 = -1 → 𝐴 < 0) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = -1 → 𝐴 < 0)) |
12 | neg1rr 11002 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
13 | neg1lt0 11004 | . . . . . . . . 9 ⊢ -1 < 0 | |
14 | 0lt1 10429 | . . . . . . . . 9 ⊢ 0 < 1 | |
15 | 0re 9919 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
16 | 1re 9918 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
17 | 12, 15, 16 | lttri 10042 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
18 | 13, 14, 17 | mp2an 704 | . . . . . . . 8 ⊢ -1 < 1 |
19 | 12, 18 | gtneii 10028 | . . . . . . 7 ⊢ 1 ≠ -1 |
20 | 19 | neii 2784 | . . . . . 6 ⊢ ¬ 1 = -1 |
21 | 20 | pm2.21i 115 | . . . . 5 ⊢ (1 = -1 → 𝐴 < 0) |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0)) |
23 | simp2 1055 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0) | |
24 | 23 | 3expia 1259 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = -1 → 𝐴 < 0)) |
25 | 1, 3, 5, 7, 11, 22, 24 | sgn3da 29930 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0)) |
26 | 25 | imp 444 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0) |
27 | sgnn 13682 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
28 | 26, 27 | impbida 873 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 0cc0 9815 1c1 9816 ℝ*cxr 9952 < clt 9953 -cneg 10146 sgncsgn 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-sgn 13675 |
This theorem is referenced by: sgnmulsgn 29938 |
Copyright terms: Public domain | W3C validator |