Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdc Structured version   Visualization version   GIF version

Theorem fdc 32711
Description: Finite version of dependent choice. Construct a function whose value depends on the previous function value, except at a final point at which no new value can be chosen. The final hypothesis ensures that the process will terminate. The proof does not use the Axiom of Choice. (Contributed by Jeff Madsen, 18-Jun-2010.)
Hypotheses
Ref Expression
fdc.1 𝐴 ∈ V
fdc.2 𝑀 ∈ ℤ
fdc.3 𝑍 = (ℤ𝑀)
fdc.4 𝑁 = (𝑀 + 1)
fdc.5 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
fdc.6 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
fdc.7 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
fdc.8 (𝜂𝐶𝐴)
fdc.9 (𝜂𝑅 Fr 𝐴)
fdc.10 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
fdc.11 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
Assertion
Ref Expression
fdc (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Distinct variable groups:   𝐶,𝑓,𝑛   𝐴,𝑎,𝑏,𝑓,𝑛   𝑀,𝑎,𝑏,𝑓,𝑘,𝑛   𝑍,𝑎,𝑏,𝑛   𝑁,𝑎,𝑏,𝑓,𝑘,𝑛   𝑅,𝑎,𝑏   𝜑,𝑓,𝑘   𝜓,𝑎   𝜒,𝑎,𝑏,𝑛   𝜃,𝑓,𝑛   𝜏,𝑎,𝑏   𝜂,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑛,𝑎,𝑏)   𝜓(𝑓,𝑘,𝑛,𝑏)   𝜒(𝑓,𝑘)   𝜃(𝑘,𝑎,𝑏)   𝜏(𝑓,𝑘,𝑛)   𝜂(𝑓,𝑘,𝑛)   𝐴(𝑘)   𝐶(𝑘,𝑎,𝑏)   𝑅(𝑓,𝑘,𝑛)   𝑍(𝑓,𝑘)

Proof of Theorem fdc
Dummy variables 𝑐 𝑑 𝑔 𝑚 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fdc.8 . 2 (𝜂𝐶𝐴)
2 fdc.2 . . . . . . . . . . . . . . . . . . 19 𝑀 ∈ ℤ
3 uzid 11578 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ (ℤ𝑀)
5 fdc.3 . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
64, 5eleqtrri 2687 . . . . . . . . . . . . . . . . 17 𝑀𝑍
7 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩}
82elexi 3186 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀 ∈ V
9 vex 3176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
108, 9fsn 6308 . . . . . . . . . . . . . . . . . . . . . 22 ({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ↔ {⟨𝑀, 𝑎⟩} = {⟨𝑀, 𝑎⟩})
117, 10mpbir 220 . . . . . . . . . . . . . . . . . . . . 21 {⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎}
12 snssi 4280 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 → {𝑎} ⊆ 𝐴)
13 fss 5969 . . . . . . . . . . . . . . . . . . . . 21 (({⟨𝑀, 𝑎⟩}:{𝑀}⟶{𝑎} ∧ {𝑎} ⊆ 𝐴) → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1411, 12, 13sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
15 fzsn 12254 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
162, 15ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝑀...𝑀) = {𝑀}
1716feq2i 5950 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:{𝑀}⟶𝐴)
1814, 17sylibr 223 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴 → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
1918adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴)
208, 9fvsn 6351 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎
2120a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎)
22 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝜃) → 𝜃)
23 snex 4835 . . . . . . . . . . . . . . . . . . 19 {⟨𝑀, 𝑎⟩} ∈ V
24 feq1 5939 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓:(𝑀...𝑀)⟶𝐴 ↔ {⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴))
25 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = ({⟨𝑀, 𝑎⟩}‘𝑀))
2625eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓𝑀) = 𝑎 ↔ ({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎))
2725, 20syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = {⟨𝑀, 𝑎⟩} → (𝑓𝑀) = 𝑎)
28 sbceq2a 3414 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑀) = 𝑎 → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {⟨𝑀, 𝑎⟩} → ([(𝑓𝑀) / 𝑎]𝜃𝜃))
3026, 29anbi12d 743 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = {⟨𝑀, 𝑎⟩} → (((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ↔ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)))
3124, 30anbi12d 743 . . . . . . . . . . . . . . . . . . 19 (𝑓 = {⟨𝑀, 𝑎⟩} → ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ↔ ({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃))))
3223, 31spcev 3273 . . . . . . . . . . . . . . . . . 18 (({⟨𝑀, 𝑎⟩}:(𝑀...𝑀)⟶𝐴 ∧ (({⟨𝑀, 𝑎⟩}‘𝑀) = 𝑎𝜃)) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
3319, 21, 22, 32syl12anc 1316 . . . . . . . . . . . . . . . . 17 ((𝑎𝐴𝜃) → ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
34 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3534feq2d 5944 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑀)⟶𝐴))
36 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓𝑛) ∈ V
37 fdc.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑛) → (𝜃𝜏))
3836, 37sbcie 3437 . . . . . . . . . . . . . . . . . . . . . . 23 ([(𝑓𝑛) / 𝑎]𝜃𝜏)
39 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑀 → (𝑓𝑛) = (𝑓𝑀))
4039sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑀) / 𝑎]𝜃))
4138, 40syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝜏[(𝑓𝑀) / 𝑎]𝜃))
4241anbi2d 736 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
43 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑀 → (𝑁...𝑛) = (𝑁...𝑀))
44 fdc.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 = (𝑀 + 1)
4544oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁...𝑀) = ((𝑀 + 1)...𝑀)
462zrei 11260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 ∈ ℝ
4746ltp1i 10806 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 < (𝑀 + 1)
48 peano2z 11295 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
492, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 + 1) ∈ ℤ
50 fzn 12228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅))
5149, 2, 50mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑀) = ∅)
5247, 51mpbi 219 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 + 1)...𝑀) = ∅
5345, 52eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁...𝑀) = ∅
5443, 53syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑀 → (𝑁...𝑛) = ∅)
5554raleqdv 3121 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑀 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ ∅ 𝜒))
5635, 42, 553anbi123d 1391 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒)))
57 ral0 4028 . . . . . . . . . . . . . . . . . . . . 21 𝑘 ∈ ∅ 𝜒
58 df-3an 1033 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)) ∧ ∀𝑘 ∈ ∅ 𝜒))
5957, 58mpbiran2 956 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃) ∧ ∀𝑘 ∈ ∅ 𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃)))
6056, 59syl6bb 275 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑀 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6160exbidv 1837 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑀 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))))
6261rspcev 3282 . . . . . . . . . . . . . . . . 17 ((𝑀𝑍 ∧ ∃𝑓(𝑓:(𝑀...𝑀)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓𝑀) / 𝑎]𝜃))) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
636, 33, 62sylancr 694 . . . . . . . . . . . . . . . 16 ((𝑎𝐴𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6463adantll 746 . . . . . . . . . . . . . . 15 (((𝜂𝑎𝐴) ∧ 𝜃) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
6564a1d 25 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ 𝜃) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
66 fdc.11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝑅𝑎)
67 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑏 → (𝑑𝑅𝑎𝑏𝑅𝑎))
6867rspcev 3282 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∧ 𝑏𝑅𝑎) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎)
6968expcom 450 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝑅𝑎 → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
7066, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎))
71 dfrex2 2979 . . . . . . . . . . . . . . . . . . . 20 (∃𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})𝑑𝑅𝑎 ↔ ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
7270, 71syl6ib 240 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
7372con2d 128 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
74 eldif 3550 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ (𝑏𝐴 ∧ ¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
7574simplbi2 653 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → 𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))))
76 ssrab2 3650 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴
77 dfss4 3820 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
7876, 77mpbi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}
7978eleq2i 2680 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ 𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
80 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑏 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑏))
8180anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑏 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑏𝜏)))
82813anbi2d 1396 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑏 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8382exbidv 1837 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = 𝑏 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8483rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = 𝑏 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8584elrab3 3332 . . . . . . . . . . . . . . . . . . . . 21 (𝑏𝐴 → (𝑏 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8679, 85syl5bb 271 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝐴 → (𝑏 ∈ (𝐴 ∖ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8775, 86sylibd 228 . . . . . . . . . . . . . . . . . . 19 (𝑏𝐴 → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
8887ad2antll 761 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑏 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
89 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
9089feq2d 5944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...𝑚)⟶𝐴))
91 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9291sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓𝑚) / 𝑎]𝜃))
9338, 92syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝜏[(𝑓𝑚) / 𝑎]𝜃))
9493anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (((𝑓𝑀) = 𝑏𝜏) ↔ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃)))
95 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑁...𝑛) = (𝑁...𝑚))
9695raleqdv 3121 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
9790, 94, 963anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9897exbidv 1837 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒)))
9998cbvrexv 3148 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒))
100 feq1 5939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓:(𝑀...𝑚)⟶𝐴𝑔:(𝑀...𝑚)⟶𝐴))
101 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑀) = (𝑔𝑀))
102101eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ((𝑓𝑀) = 𝑏 ↔ (𝑔𝑀) = 𝑏))
103 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → (𝑓𝑚) = (𝑔𝑚))
104103sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → ([(𝑓𝑚) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
105102, 104anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
106 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓‘(𝑘 − 1)) ∈ V
107 fdc.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓‘(𝑘 − 1)) → (𝜑𝜓))
108107sbcbidv 3457 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓‘(𝑘 − 1)) → ([(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓))
109106, 108sbcie 3437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑓𝑘) / 𝑏]𝜓)
110 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝑘) ∈ V
111 fdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = (𝑓𝑘) → (𝜓𝜒))
112110, 111sbcie 3437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ([(𝑓𝑘) / 𝑏]𝜓𝜒)
113109, 112bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . 25 ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑𝜒)
114 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → (𝑓‘(𝑘 − 1)) = (𝑔‘(𝑘 − 1)))
115 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = 𝑔 → (𝑓𝑘) = (𝑔𝑘))
116115sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = 𝑔 → ([(𝑓𝑘) / 𝑏]𝜑[(𝑔𝑘) / 𝑏]𝜑))
117114, 116sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑔 → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
118113, 117syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑔 → (𝜒[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
119118ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (∀𝑘 ∈ (𝑁...𝑚)𝜒 ↔ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
120100, 105, 1193anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
121120cbvexv 2263 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
122121rexbii 3023 . . . . . . . . . . . . . . . . . . . 20 (∃𝑚𝑍𝑓(𝑓:(𝑀...𝑚)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏[(𝑓𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
12399, 122bitri 263 . . . . . . . . . . . . . . . . . . 19 (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑))
1245peano2uzs 11618 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → (𝑚 + 1) ∈ 𝑍)
125124ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑚 + 1) ∈ 𝑍)
126 sbceq2a 3414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → ([𝑑 / 𝑏]𝜑𝜑))
127126anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → (([𝑑 / 𝑏]𝜑𝑎𝐴) ↔ (𝜑𝑎𝐴)))
128127anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) ↔ ((𝜑𝑎𝐴) ∧ 𝑚𝑍)))
129 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑑 = 𝑏 → ((𝑔𝑀) = 𝑑 ↔ (𝑔𝑀) = 𝑏))
130129anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 𝑏 → (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ↔ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃)))
1311303anbi2d 1396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑏 → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ↔ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)))
132131imbi1d 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑏 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
133128, 132imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑏 → (((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
134 sbceq2a 3414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ([𝑐 / 𝑎][𝑑 / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
135 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (𝑐𝐴𝑎𝐴))
136134, 135anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ↔ ([𝑑 / 𝑏]𝜑𝑎𝐴)))
137136anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ↔ (([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍)))
138 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑎 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝑎))
139138anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
1401393anbi2d 1396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
141140exbidv 1837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
142141imbi2d 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → (((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) ↔ ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))))
143137, 142imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑎 → (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))) ↔ ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))))
144 peano2uz 11617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ𝑀))
145144, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑀))
146 elfzp12 12288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
148147ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↔ (𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))))
149 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = 𝑐)
150149eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = 𝑀 → (if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴𝑐𝐴))
151150biimprcd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐𝐴 → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
152151ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 = 𝑀 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
153 1re 9918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1 ∈ ℝ
15446, 153readdcli 9932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 + 1) ∈ ℝ
15546, 154ltnlei 10037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)
15647, 155mpbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ¬ (𝑀 + 1) ≤ 𝑀
157 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1))))
158 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑀 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀)
159157, 158syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 = 𝑀 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑀 + 1) ≤ 𝑀))
160159com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 = 𝑀 → (𝑀 + 1) ≤ 𝑀))
161156, 160mtoi 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → ¬ 𝑥 = 𝑀)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → ¬ 𝑥 = 𝑀)
163162iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = (𝑔‘(𝑥 − 1)))
164 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → 𝑥 ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → 𝑥 ∈ ℤ)
166 eluzelz 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
167166, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍𝑚 ∈ ℤ)
168167peano2zd 11361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑚 + 1) ∈ ℤ)
169 1z 11284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1 ∈ ℤ
170 fzsubel 12248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) ↔ (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
171170biimpd 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
172169, 171mpanr2 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑀 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
17349, 172mpanl1 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
174173ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 + 1) ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
175168, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑥 ∈ ℤ → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
176175com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))))
177176imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 ∈ ℤ → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1))))
178165, 177mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)))
17946recni 9931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑀 ∈ ℂ
180 ax-1cn 9873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1 ∈ ℂ
181179, 180pncan3oi 10176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑀 + 1) − 1) = 𝑀
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑀 + 1) − 1) = 𝑀)
183167zcnd 11359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍𝑚 ∈ ℂ)
184 pncan 10166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
185183, 180, 184sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑚 + 1) − 1) = 𝑚)
186182, 185oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (((𝑀 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑀...𝑚))
188178, 187eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑥 − 1) ∈ (𝑀...𝑚))
189 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑥 − 1) ∈ (𝑀...𝑚)) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
190188, 189sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ (𝑚𝑍𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
191190anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑔:(𝑀...𝑚)⟶𝐴𝑚𝑍) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
192191ancom1s 843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → (𝑔‘(𝑥 − 1)) ∈ 𝐴)
193163, 192eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) ∧ 𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
194193ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚𝑍𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
195194adantll 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
196152, 195jaod 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ((𝑥 = 𝑀𝑥 ∈ ((𝑀 + 1)...(𝑚 + 1))) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
197148, 196sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴))
198197ralrimiv 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → ∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴)
199 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))
200199fmpt 6289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑥 ∈ (𝑀...(𝑚 + 1))if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) ∈ 𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
201198, 200sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑐𝐴𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
202201adantlll 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ 𝑔:(𝑀...𝑚)⟶𝐴) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
2032023ad2antr1 1219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴)
204 eluzfz1 12219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
205144, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑚 + 1)))
206205, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚𝑍𝑀 ∈ (𝑀...(𝑚 + 1)))
207 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑐 ∈ V
208149, 199, 207fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
209206, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
210209ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
211 eluzfz2 12220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 + 1) ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
212144, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
213212, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → (𝑚 + 1) ∈ (𝑀...(𝑚 + 1)))
214 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑥 = 𝑀 ↔ (𝑚 + 1) = 𝑀))
215 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = (𝑚 + 1) → (𝑥 − 1) = ((𝑚 + 1) − 1))
216215fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 = (𝑚 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑚 + 1) − 1)))
217214, 216ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (𝑚 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
218 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔‘((𝑚 + 1) − 1)) ∈ V
219207, 218ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) ∈ V
220217, 199, 219fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
221213, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))))
222 eluzle 11576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚 ∈ (ℤ𝑀) → 𝑀𝑚)
223222, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍𝑀𝑚)
224 zleltp1 11305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀𝑚𝑀 < (𝑚 + 1)))
2252, 167, 224sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑀𝑚𝑀 < (𝑚 + 1)))
226223, 225mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚𝑍𝑀 < (𝑚 + 1))
227 ltne 10013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑀 ∈ ℝ ∧ 𝑀 < (𝑚 + 1)) → (𝑚 + 1) ≠ 𝑀)
22846, 226, 227sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑚𝑍 → (𝑚 + 1) ≠ 𝑀)
229228neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑚𝑍 → ¬ (𝑚 + 1) = 𝑀)
230229iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → if((𝑚 + 1) = 𝑀, 𝑐, (𝑔‘((𝑚 + 1) − 1))) = (𝑔‘((𝑚 + 1) − 1)))
231185fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚𝑍 → (𝑔‘((𝑚 + 1) − 1)) = (𝑔𝑚))
232221, 230, 2313eqtrd 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) = (𝑔𝑚))
233232sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚𝑍 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃[(𝑔𝑚) / 𝑎]𝜃))
234233biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚𝑍[(𝑔𝑚) / 𝑎]𝜃) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
235234ad2ant2l 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
2362353ad2antr2 1220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)
237 eluzp1p1 11589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ (ℤ𝑀) → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
238237, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ‘(𝑀 + 1)))
23944fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (ℤ𝑁) = (ℤ‘(𝑀 + 1))
240238, 239syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑚𝑍 → (𝑚 + 1) ∈ (ℤ𝑁))
241 elfzp12 12288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 + 1) ∈ (ℤ𝑁) → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
242240, 241syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑚𝑍 → (𝑗 ∈ (𝑁...(𝑚 + 1)) ↔ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))))
243242biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚𝑍𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
244243adantll 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
245244adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))))
246 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁 → (𝑗 − 1) = (𝑁 − 1))
24744oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 − 1) = ((𝑀 + 1) − 1)
248247, 181eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 − 1) = 𝑀
249246, 248syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → (𝑗 − 1) = 𝑀)
250249fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
251250ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
252209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐)
253251, 252eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = 𝑐)
25444eqeq2i 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = 𝑁𝑗 = (𝑀 + 1))
255 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 = (𝑀 + 1) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
256254, 255sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 = 𝑁 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
257256ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)))
25846, 154, 47ltleii 10039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 ≤ (𝑀 + 1)
259 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑀 + 1)))
2602, 49, 258, 259mpbir3an 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) ∈ (ℤ𝑀)
261 fzss1 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
262260, 261ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
263 eluzfz1 12219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑚))
264263, 5eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍𝑀 ∈ (𝑀...𝑚))
265 fzaddel 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2662, 169, 265mpanr12 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
2672, 167, 266sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑚𝑍 → (𝑀 ∈ (𝑀...𝑚) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1))))
268264, 267mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑚𝑍 → (𝑀 + 1) ∈ ((𝑀 + 1)...(𝑚 + 1)))
269262, 268sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑚𝑍 → (𝑀 + 1) ∈ (𝑀...(𝑚 + 1)))
270 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑥 = 𝑀 ↔ (𝑀 + 1) = 𝑀))
271 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = ((𝑀 + 1) − 1))
272271, 181syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑥 = (𝑀 + 1) → (𝑥 − 1) = 𝑀)
273272fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = (𝑀 + 1) → (𝑔‘(𝑥 − 1)) = (𝑔𝑀))
274270, 273ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = (𝑀 + 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
275 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑔𝑀) ∈ V
276207, 275ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) ∈ V
277274, 199, 276fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
278269, 277syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)))
27946, 47gtneii 10028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑀 + 1) ≠ 𝑀
280 ifnefalse 4048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑀 + 1) ≠ 𝑀 → if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀))
281279, 280ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑀 + 1) = 𝑀, 𝑐, (𝑔𝑀)) = (𝑔𝑀)
282278, 281syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
283282adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑀 + 1)) = (𝑔𝑀))
284 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → (𝑔𝑀) = 𝑑)
285257, 283, 2843eqtrd 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = 𝑑)
286285sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑑 / 𝑏]𝜑))
287253, 286sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[𝑐 / 𝑎][𝑑 / 𝑏]𝜑))
288287biimparc 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (([𝑐 / 𝑎][𝑑 / 𝑏]𝜑 ∧ (𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
289288anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑𝑗 = 𝑁)) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
290289anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ (𝑔𝑀) = 𝑑) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
291290adantlrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 = 𝑁) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
292 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℤ)
293292adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ℤ)
29444, 49eqeltri 2684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℤ
295 peano2z 11295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
296294, 295ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 + 1) ∈ ℤ
297 fzsubel 12248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
298297biimpd 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
299169, 298mpanr2 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
300299ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑁 + 1) ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
301296, 168, 300sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑚𝑍 → (𝑗 ∈ ℤ → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
302301com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))))
303302imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 ∈ ℤ → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1))))
304293, 303mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)))
305294zrei 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 𝑁 ∈ ℝ
306305recni 9931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ ℂ
307306, 180pncan3oi 10176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑁 + 1) − 1) = 𝑁
308307a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑚𝑍 → ((𝑁 + 1) − 1) = 𝑁)
309308, 185oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑚𝑍 → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
310309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (((𝑁 + 1) − 1)...((𝑚 + 1) − 1)) = (𝑁...𝑚))
311304, 310eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...𝑚))
312 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑘 = (𝑗 − 1) → (𝑘 − 1) = ((𝑗 − 1) − 1))
313312fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → (𝑔‘(𝑘 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
314 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑘 = (𝑗 − 1) → (𝑔𝑘) = (𝑔‘(𝑗 − 1)))
315314sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = (𝑗 − 1) → ([(𝑔𝑘) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
316313, 315sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 = (𝑗 − 1) → ([(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
317316rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑗 − 1) ∈ (𝑁...𝑚) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
318311, 317sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑)
31944, 260eqeltri 2684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 𝑁 ∈ (ℤ𝑀)
320 fzss1 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁 ∈ (ℤ𝑀) → (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
321319, 320ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
322 fzssp1 12255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑁...𝑚) ⊆ (𝑁...(𝑚 + 1))
323322, 311sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑁...(𝑚 + 1)))
324321, 323sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → (𝑗 − 1) ∈ (𝑀...(𝑚 + 1)))
325 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑥 = 𝑀 ↔ (𝑗 − 1) = 𝑀))
326 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = (𝑗 − 1) → (𝑥 − 1) = ((𝑗 − 1) − 1))
327326fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = (𝑗 − 1) → (𝑔‘(𝑥 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
328325, 327ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑥 = (𝑗 − 1) → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
329 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑔‘((𝑗 − 1) − 1)) ∈ V
330207, 329ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) ∈ V
331328, 199, 330fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑗 − 1) ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
332324, 331syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))))
333154ltp1i 10806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 + 1) < ((𝑀 + 1) + 1)
33444oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) = ((𝑀 + 1) + 1)
335333, 334breqtrri 4610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑀 + 1) < (𝑁 + 1)
336305, 153readdcli 9932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑁 + 1) ∈ ℝ
337154, 336ltnlei 10037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑀 + 1) < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ (𝑀 + 1))
338335, 337mpbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ¬ (𝑁 + 1) ≤ (𝑀 + 1)
339292zcnd 11359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → 𝑗 ∈ ℂ)
340 subadd 10163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
341180, 179, 340mp3an23 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ℂ → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
342339, 341syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 ↔ (1 + 𝑀) = 𝑗))
343 eqcom 2617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((1 + 𝑀) = 𝑗𝑗 = (1 + 𝑀))
344180, 179addcomi 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 𝑀) = (𝑀 + 1)
345344eqeq2i 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (1 + 𝑀) ↔ 𝑗 = (𝑀 + 1))
346343, 345bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((1 + 𝑀) = 𝑗𝑗 = (𝑀 + 1))
347 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ (𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1))))
348 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑀 + 1) ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1))
349347, 348syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = (𝑀 + 1) → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ (𝑀 + 1)))
350349com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = (𝑀 + 1) → (𝑁 + 1) ≤ (𝑀 + 1)))
351346, 350syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((1 + 𝑀) = 𝑗 → (𝑁 + 1) ≤ (𝑀 + 1)))
352342, 351sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ((𝑗 − 1) = 𝑀 → (𝑁 + 1) ≤ (𝑀 + 1)))
353338, 352mtoi 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ (𝑗 − 1) = 𝑀)
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ (𝑗 − 1) = 𝑀)
355354iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if((𝑗 − 1) = 𝑀, 𝑐, (𝑔‘((𝑗 − 1) − 1))) = (𝑔‘((𝑗 − 1) − 1)))
356332, 355eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = (𝑔‘((𝑗 − 1) − 1)))
357 peano2uz 11617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
358 fzss1 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1)))
359319, 357, 358mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁 + 1)...(𝑚 + 1)) ⊆ (𝑀...(𝑚 + 1))
360 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))
361359, 360sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → 𝑗 ∈ (𝑀...(𝑚 + 1)))
362 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑥 = 𝑀𝑗 = 𝑀))
363 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
364363fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 = 𝑗 → (𝑔‘(𝑥 − 1)) = (𝑔‘(𝑗 − 1)))
365362, 364ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 = 𝑗 → if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
366 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑔‘(𝑗 − 1)) ∈ V
367207, 366ifex 4106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) ∈ V
368365, 199, 367fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑗 ∈ (𝑀...(𝑚 + 1)) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
369361, 368syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))))
37047, 44breqtrri 4610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑀 < 𝑁
371305ltp1i 10806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 𝑁 < (𝑁 + 1)
37246, 305, 336lttri 10042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑀 < 𝑁𝑁 < (𝑁 + 1)) → 𝑀 < (𝑁 + 1))
373370, 371, 372mp2an 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 𝑀 < (𝑁 + 1)
37446, 336ltnlei 10037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑀 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑀)
375373, 374mpbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ¬ (𝑁 + 1) ≤ 𝑀
376 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) ↔ 𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1))))
377 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝑀 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀)
378376, 377syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑗 = 𝑀 → (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑁 + 1) ≤ 𝑀))
379378com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → (𝑗 = 𝑀 → (𝑁 + 1) ≤ 𝑀))
380375, 379mtoi 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)) → ¬ 𝑗 = 𝑀)
381380adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ¬ 𝑗 = 𝑀)
382381iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → if(𝑗 = 𝑀, 𝑐, (𝑔‘(𝑗 − 1))) = (𝑔‘(𝑗 − 1)))
383369, 382eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = (𝑔‘(𝑗 − 1)))
384383sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
385356, 384sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑))
386385biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ [(𝑔‘((𝑗 − 1) − 1)) / 𝑎][(𝑔‘(𝑗 − 1)) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
387318, 386syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚𝑍𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
388387an32s 842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚𝑍 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
389388adantlrl 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑚𝑍 ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
390389adantlll 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
391291, 390jaodan 822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ (𝑗 = 𝑁𝑗 ∈ ((𝑁 + 1)...(𝑚 + 1)))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
392245, 391syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) ∧ 𝑗 ∈ (𝑁...(𝑚 + 1))) → [((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
393392ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑)
394 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
395394fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
396 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 = 𝑘 → ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
397396sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
398395, 397sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 = 𝑘 → ([((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
399398cbvralv 3147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑗 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑗 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑗) / 𝑏]𝜑 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
400393, 399sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
401400adantllr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ ((𝑔𝑀) = 𝑑 ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
402401adantrlr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
4034023adantr1 1213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)
404 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀...(𝑚 + 1)) ∈ V
405404mptex 6390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) ∈ V
406 feq1 5939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ↔ (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴))
407 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑀) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀))
408407eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓𝑀) = 𝑐 ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐))
409 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑚 + 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)))
410409sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑚 + 1)) / 𝑎]𝜃[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃))
411408, 410anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ↔ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃)))
412 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓‘(𝑘 − 1)) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)))
413 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝑓𝑘) = ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘))
414413sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
415412, 414sbceqbid 3409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ([(𝑓‘(𝑘 − 1)) / 𝑎][(𝑓𝑘) / 𝑏]𝜑[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
416113, 415syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (𝜒[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
417416ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → (∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑))
418406, 411, 4173anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))) → ((𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒) ↔ ((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑)))
419405, 418spcev 3273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1)))):(𝑀...(𝑚 + 1))⟶𝐴 ∧ (((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑀) = 𝑐[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))[((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘(𝑘 − 1)) / 𝑎][((𝑥 ∈ (𝑀...(𝑚 + 1)) ↦ if(𝑥 = 𝑀, 𝑐, (𝑔‘(𝑥 − 1))))‘𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
420203, 210, 236, 403, 419syl121anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
421420ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((([𝑐 / 𝑎][𝑑 / 𝑏]𝜑𝑐𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑐[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
422143, 421chvarv 2251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((([𝑑 / 𝑏]𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑑[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
423133, 422chvarv 2251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑎𝐴) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
424423adantlrr 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
425424adantlll 750 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
426425imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
427 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑀...𝑛) = (𝑀...(𝑚 + 1)))
428427feq2d 5944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (𝑓:(𝑀...𝑛)⟶𝐴𝑓:(𝑀...(𝑚 + 1))⟶𝐴))
429 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = (𝑚 + 1) → (𝑓𝑛) = (𝑓‘(𝑚 + 1)))
430429sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑚 + 1) → ([(𝑓𝑛) / 𝑎]𝜃[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
43138, 430syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝜏[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃))
432431anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (((𝑓𝑀) = 𝑎𝜏) ↔ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃)))
433 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑚 + 1) → (𝑁...𝑛) = (𝑁...(𝑚 + 1)))
434433raleqdv 3121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = (𝑚 + 1) → (∀𝑘 ∈ (𝑁...𝑛)𝜒 ↔ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒))
435428, 432, 4343anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = (𝑚 + 1) → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
436435exbidv 1837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = (𝑚 + 1) → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)))
437436rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 + 1) ∈ 𝑍 ∧ ∃𝑓(𝑓:(𝑀...(𝑚 + 1))⟶𝐴 ∧ ((𝑓𝑀) = 𝑎[(𝑓‘(𝑚 + 1)) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...(𝑚 + 1))𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
438125, 426, 437syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) ∧ (𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
439438ex 449 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → ((𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
440439exlimdv 1848 . . . . . . . . . . . . . . . . . . . 20 ((((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑚𝑍) → (∃𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
441440rexlimdva 3013 . . . . . . . . . . . . . . . . . . 19 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑚𝑍𝑔(𝑔:(𝑀...𝑚)⟶𝐴 ∧ ((𝑔𝑀) = 𝑏[(𝑔𝑚) / 𝑎]𝜃) ∧ ∀𝑘 ∈ (𝑁...𝑚)[(𝑔‘(𝑘 − 1)) / 𝑎][(𝑔𝑘) / 𝑏]𝜑) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
442123, 441syl5bi 231 . . . . . . . . . . . . . . . . . 18 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑏𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
44373, 88, 4423syld 58 . . . . . . . . . . . . . . . . 17 (((𝜂𝜑) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
444443an42s 866 . . . . . . . . . . . . . . . 16 (((𝜂𝑎𝐴) ∧ (𝑏𝐴𝜑)) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
445444rexlimdvaa 3014 . . . . . . . . . . . . . . 15 ((𝜂𝑎𝐴) → (∃𝑏𝐴 𝜑 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))))
446445imp 444 . . . . . . . . . . . . . 14 (((𝜂𝑎𝐴) ∧ ∃𝑏𝐴 𝜑) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
447 fdc.10 . . . . . . . . . . . . . 14 ((𝜂𝑎𝐴) → (𝜃 ∨ ∃𝑏𝐴 𝜑))
44865, 446, 447mpjaodan 823 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
449138anbi1d 737 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑎 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝑎𝜏)))
4504493anbi2d 1396 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑎 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
451450exbidv 1837 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑎 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
452451rexbidv 3034 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
453452elrab3 3332 . . . . . . . . . . . . . 14 (𝑎𝐴 → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
454453adantl 481 . . . . . . . . . . . . 13 ((𝜂𝑎𝐴) → (𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑎𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
455448, 454sylibrd 248 . . . . . . . . . . . 12 ((𝜂𝑎𝐴) → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
456455ex 449 . . . . . . . . . . 11 (𝜂 → (𝑎𝐴 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
457456com23 84 . . . . . . . . . 10 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
458 eldif 3550 . . . . . . . . . . . 12 (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
459458notbii 309 . . . . . . . . . . 11 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
460 iman 439 . . . . . . . . . . 11 ((𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ ¬ (𝑎𝐴 ∧ ¬ 𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
461459, 460bitr4i 266 . . . . . . . . . 10 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ↔ (𝑎𝐴𝑎 ∈ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}))
462457, 461syl6ibr 241 . . . . . . . . 9 (𝜂 → (∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎 → ¬ 𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})))
463462con2d 128 . . . . . . . 8 (𝜂 → (𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
464463imp 444 . . . . . . 7 ((𝜂𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})) → ¬ ∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
465464nrexdv 2984 . . . . . 6 (𝜂 → ¬ ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
466 df-ne 2782 . . . . . . 7 ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ ↔ ¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
467 fdc.9 . . . . . . . 8 (𝜂𝑅 Fr 𝐴)
468 difss 3699 . . . . . . . 8 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴
469 fdc.1 . . . . . . . . . . 11 𝐴 ∈ V
470 difexg 4735 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V)
471469, 470ax-mp 5 . . . . . . . . . 10 (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V
472 fri 5000 . . . . . . . . . 10 ((((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ∈ V ∧ 𝑅 Fr 𝐴) ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
473471, 472mpanl1 712 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅)) → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎)
474473expr 641 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ⊆ 𝐴) → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
475467, 468, 474sylancl 693 . . . . . . 7 (𝜂 → ((𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ≠ ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
476466, 475syl5bir 232 . . . . . 6 (𝜂 → (¬ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅ → ∃𝑎 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})∀𝑑 ∈ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) ¬ 𝑑𝑅𝑎))
477465, 476mt3d 139 . . . . 5 (𝜂 → (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
478 ssdif0 3896 . . . . 5 (𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ (𝐴 ∖ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)}) = ∅)
479477, 478sylibr 223 . . . 4 (𝜂𝐴 ⊆ {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
48076a1i 11 . . . 4 (𝜂 → {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ⊆ 𝐴)
481479, 480eqssd 3585 . . 3 (𝜂𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)})
482 rabid2 3096 . . 3 (𝐴 = {𝑐𝐴 ∣ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)} ↔ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
483481, 482sylib 207 . 2 (𝜂 → ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
484 eqeq2 2621 . . . . . . 7 (𝑐 = 𝐶 → ((𝑓𝑀) = 𝑐 ↔ (𝑓𝑀) = 𝐶))
485484anbi1d 737 . . . . . 6 (𝑐 = 𝐶 → (((𝑓𝑀) = 𝑐𝜏) ↔ ((𝑓𝑀) = 𝐶𝜏)))
4864853anbi2d 1396 . . . . 5 (𝑐 = 𝐶 → ((𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ (𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
487486exbidv 1837 . . . 4 (𝑐 = 𝐶 → (∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
488487rexbidv 3034 . . 3 (𝑐 = 𝐶 → (∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒) ↔ ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)))
489488rspcva 3280 . 2 ((𝐶𝐴 ∧ ∀𝑐𝐴𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝑐𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒)) → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
4901, 483, 489syl2anc 691 1 (𝜂 → ∃𝑛𝑍𝑓(𝑓:(𝑀...𝑛)⟶𝐴 ∧ ((𝑓𝑀) = 𝐶𝜏) ∧ ∀𝑘 ∈ (𝑁...𝑛)𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  [wsbc 3402  cdif 3537  wss 3540  c0 3874  ifcif 4036  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643   Fr wfr 4994  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fdc1  32712
  Copyright terms: Public domain W3C validator