MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddcl Structured version   Visualization version   GIF version

Theorem zaddcl 11294
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elz2 11271 . 2 (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦))
2 elz2 11271 . 2 (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤))
3 reeanv 3086 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
4 reeanv 3086 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
5 nnaddcl 10919 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ)
65adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ)
7 nnaddcl 10919 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ)
87adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ)
9 nncn 10905 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
10 nncn 10905 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
119, 10anim12i 588 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
12 nncn 10905 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
13 nncn 10905 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
1412, 13anim12i 588 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ))
15 addsub4 10203 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1611, 14, 15syl2an 493 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1716eqcomd 2616 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤)))
18 rspceov 6590 . . . . . . . . 9 (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
196, 8, 17, 18syl3anc 1318 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
20 elz2 11271 . . . . . . . 8 (((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
2119, 20sylibr 223 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ)
22 oveq12 6558 . . . . . . . 8 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) = ((𝑥𝑦) + (𝑧𝑤)))
2322eleq1d 2672 . . . . . . 7 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ))
2421, 23syl5ibrcom 236 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2524rexlimdvva 3020 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
264, 25syl5bir 232 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2726rexlimivv 3018 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
283, 27sylbir 224 . 2 ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
291, 2, 28syl2anb 495 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  cc 9813   + caddc 9818  cmin 10145  cn 10897  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255
This theorem is referenced by:  peano2z  11295  zsubcl  11296  zrevaddcl  11299  zdivadd  11324  zaddcld  11362  eluzaddi  11590  eluzsubi  11591  nn0pzuz  11621  fzen  12229  fzaddel  12246  fzadd2  12247  fzrev3  12276  fzrevral3  12296  elfzmlbp  12319  fzoaddel  12388  zpnn0elfzo  12407  elfzomelpfzo  12438  fzoshftral  12447  modsumfzodifsn  12605  ccatsymb  13219  swrdccatin2  13338  revccat  13366  2cshw  13410  cshweqrep  13418  2cshwcshw  13422  cshwcsh2id  13425  cshco  13433  climshftlem  14153  isershft  14242  iseraltlem2  14261  fsumzcl  14313  zrisefaccl  14590  summodnegmod  14850  dvds2ln  14852  dvds2add  14853  dvdsadd  14862  dvdsadd2b  14866  addmodlteqALT  14885  3dvdsdec  14892  3dvdsdecOLD  14893  3dvds2dec  14894  3dvds2decOLD  14895  opoe  14925  opeo  14927  divalglem2  14956  ndvdsadd  14972  gcdaddmlem  15083  pythagtriplem9  15367  difsqpwdvds  15429  gzaddcl  15479  mod2xnegi  15613  cshwshashlem2  15641  cycsubgcl  17443  efgredleme  17979  zaddablx  18098  pgpfac1lem2  18297  zsubrg  19618  zringmulg  19645  expghm  19663  mulgghm2  19664  cygznlem3  19737  iaa  23884  dchrisumlem1  24978  axlowdimlem16  25637  clwwisshclwwlem1  26333  ballotlemsima  29904  mzpclall  36308  mzpindd  36327  rmxyadd  36504  jm2.18  36573  inductionexd  37473  dvdsn1add  38829  stoweidlem34  38927  fourierswlem  39123  opoeALTV  40132  opeoALTV  40133  gbogt5  40184  gboage9  40186  bgoldbst  40200  2elfz2melfz  40355  crctcsh1wlkn0lem4  41016  crctcsh1wlkn0  41024  clwwisshclwwslemlem  41233  2zrngamgm  41729
  Copyright terms: Public domain W3C validator