MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshweqrep Structured version   Visualization version   GIF version

Theorem cshweqrep 13418
Description: If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshweqrep ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
Distinct variable groups:   𝑗,𝐼   𝑗,𝐿   𝑗,𝑉   𝑗,𝑊

Proof of Theorem cshweqrep
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 · 𝐿) = (0 · 𝐿))
21oveq2d 6565 . . . . . . . . 9 (𝑥 = 0 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (0 · 𝐿)))
32oveq1d 6564 . . . . . . . 8 (𝑥 = 0 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))
43fveq2d 6107 . . . . . . 7 (𝑥 = 0 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))
54eqeq2d 2620 . . . . . 6 (𝑥 = 0 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))))
65imbi2d 329 . . . . 5 (𝑥 = 0 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))))
7 oveq1 6556 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 · 𝐿) = (𝑦 · 𝐿))
87oveq2d 6565 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (𝑦 · 𝐿)))
98oveq1d 6564 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))
109fveq2d 6107 . . . . . . 7 (𝑥 = 𝑦 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
1110eqeq2d 2620 . . . . . 6 (𝑥 = 𝑦 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))))
1211imbi2d 329 . . . . 5 (𝑥 = 𝑦 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))))
13 oveq1 6556 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐿) = ((𝑦 + 1) · 𝐿))
1413oveq2d 6565 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + ((𝑦 + 1) · 𝐿)))
1514oveq1d 6564 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
1615fveq2d 6107 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
1716eqeq2d 2620 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
1817imbi2d 329 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
19 oveq1 6556 . . . . . . . . . 10 (𝑥 = 𝑗 → (𝑥 · 𝐿) = (𝑗 · 𝐿))
2019oveq2d 6565 . . . . . . . . 9 (𝑥 = 𝑗 → (𝐼 + (𝑥 · 𝐿)) = (𝐼 + (𝑗 · 𝐿)))
2120oveq1d 6564 . . . . . . . 8 (𝑥 = 𝑗 → ((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)) = ((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))
2221fveq2d 6107 . . . . . . 7 (𝑥 = 𝑗 → (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))
2322eqeq2d 2620 . . . . . 6 (𝑥 = 𝑗 → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
2423imbi2d 329 . . . . 5 (𝑥 = 𝑗 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑥 · 𝐿)) mod (#‘𝑊)))) ↔ (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))))
25 zcn 11259 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
2625mul02d 10113 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → (0 · 𝐿) = 0)
2726adantl 481 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (0 · 𝐿) = 0)
2827adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (0 · 𝐿) = 0)
2928oveq2d 6565 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + (0 · 𝐿)) = (𝐼 + 0))
30 elfzoelz 12339 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(#‘𝑊)) → 𝐼 ∈ ℤ)
3130zcnd 11359 . . . . . . . . . . 11 (𝐼 ∈ (0..^(#‘𝑊)) → 𝐼 ∈ ℂ)
3231addid1d 10115 . . . . . . . . . 10 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐼 + 0) = 𝐼)
3332ad2antll 761 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + 0) = 𝐼)
3429, 33eqtrd 2644 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 + (0 · 𝐿)) = 𝐼)
3534oveq1d 6564 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)) = (𝐼 mod (#‘𝑊)))
36 zmodidfzoimp 12562 . . . . . . . 8 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐼 mod (#‘𝑊)) = 𝐼)
3736ad2antll 761 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝐼 mod (#‘𝑊)) = 𝐼)
3835, 37eqtr2d 2645 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → 𝐼 = ((𝐼 + (0 · 𝐿)) mod (#‘𝑊)))
3938fveq2d 6107 . . . . 5 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (0 · 𝐿)) mod (#‘𝑊))))
40 fveq1 6102 . . . . . . . . . . . . 13 (𝑊 = (𝑊 cyclShift 𝐿) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4140eqcoms 2618 . . . . . . . . . . . 12 ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4241ad2antrl 760 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
4342adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))))
44 simprll 798 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → 𝑊 ∈ Word 𝑉)
45 simprlr 799 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → 𝐿 ∈ ℤ)
46 elfzo0 12376 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (0..^(#‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)))
47 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → 𝐼 ∈ ℤ)
49 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
50 zmulcl 11303 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑦 · 𝐿) ∈ ℤ)
5149, 50sylan 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ0𝐿 ∈ ℤ) → (𝑦 · 𝐿) ∈ ℤ)
5251ancoms 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝐿) ∈ ℤ)
53 zaddcl 11294 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℤ ∧ (𝑦 · 𝐿) ∈ ℤ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℤ)
5448, 52, 53syl2an 493 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℤ)
55 simplr 788 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → (#‘𝑊) ∈ ℕ)
5654, 55jca 553 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) ∧ (𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0)) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
5756ex 449 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
58573adant3 1074 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
5946, 58sylbi 206 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6059adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6160expd 451 . . . . . . . . . . . . . . . 16 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝐿 ∈ ℤ → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6261com12 32 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℤ → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6362adantl 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))))
6463imp 444 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑦 ∈ ℕ0 → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ)))
6564impcom 445 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
66 zmodfzo 12555 . . . . . . . . . . . 12 (((𝐼 + (𝑦 · 𝐿)) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
6765, 66syl 17 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
68 cshwidxmod 13400 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ ∧ ((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))))
6944, 45, 67, 68syl3anc 1318 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊 cyclShift 𝐿)‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))))
70 nn0re 11178 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
71 zre 11258 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
72 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
73 nnrp 11718 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑊) ∈ ℕ → (#‘𝑊) ∈ ℝ+)
74 remulcl 9900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℝ)
7574ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℝ)
76 readdcl 9898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ ℝ ∧ (𝑦 · 𝐿) ∈ ℝ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7775, 76sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7877ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (𝐼 + (𝑦 · 𝐿)) ∈ ℝ)
80 simprll 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → 𝐿 ∈ ℝ)
81 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (#‘𝑊) ∈ ℝ+)
82 modaddmod 12571 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐼 + (𝑦 · 𝐿)) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ+) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)))
8379, 80, 81, 82syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)))
84 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐼 ∈ ℝ → 𝐼 ∈ ℂ)
8584adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → 𝐼 ∈ ℂ)
8674recnd 9947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
8786ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
8887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝑦 · 𝐿) ∈ ℂ)
89 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝐿 ∈ ℂ)
9190adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → 𝐿 ∈ ℂ)
9285, 88, 91addassd 9941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 · 𝐿) + 𝐿)))
93 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
9493adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
95 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
9694, 95, 90adddird 9944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) · 𝐿) = ((𝑦 · 𝐿) + (1 · 𝐿)))
9789mulid2d 9937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐿 ∈ ℝ → (1 · 𝐿) = 𝐿)
9897adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝐿) = 𝐿)
9998oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 · 𝐿) + (1 · 𝐿)) = ((𝑦 · 𝐿) + 𝐿))
10096, 99eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 · 𝐿) + 𝐿) = ((𝑦 + 1) · 𝐿))
101100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝑦 · 𝐿) + 𝐿) = ((𝑦 + 1) · 𝐿))
102101oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → (𝐼 + ((𝑦 · 𝐿) + 𝐿)) = (𝐼 + ((𝑦 + 1) · 𝐿)))
10392, 102eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 + 1) · 𝐿)))
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((𝐼 + (𝑦 · 𝐿)) + 𝐿) = (𝐼 + ((𝑦 + 1) · 𝐿)))
105104oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → (((𝐼 + (𝑦 · 𝐿)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
10683, 105eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑊) ∈ ℝ+ ∧ ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ)) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
107106ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑊) ∈ ℝ+ → (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
10873, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑊) ∈ ℕ → (((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐼 ∈ ℝ) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
109108expd 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
110109com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((#‘𝑊) ∈ ℕ → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
11171, 72, 110syl2an 493 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((#‘𝑊) ∈ ℕ → (𝐼 ∈ ℝ → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
112111com13 86 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℝ → ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
11370, 112syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℕ0 → ((#‘𝑊) ∈ ℕ → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
114113imp 444 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
1151143adant3 1074 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝐼 < (#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
11646, 115sylbi 206 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
117116expd 451 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(#‘𝑊)) → (𝐿 ∈ ℤ → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
118117adantld 482 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^(#‘𝑊)) → ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
119118adantl 481 . . . . . . . . . . . . 13 (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
120119impcom 445 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑦 ∈ ℕ0 → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
121120impcom 445 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊)) = ((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))
122121fveq2d 6107 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)) + 𝐿) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
12343, 69, 1223eqtrd 2648 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))
124123eqeq2d 2620 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) ↔ (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
125124biimpd 218 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊)))))
126125ex 449 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ((𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
127126a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑦 · 𝐿)) mod (#‘𝑊)))) → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + ((𝑦 + 1) · 𝐿)) mod (#‘𝑊))))))
1286, 12, 18, 24, 39, 127nn0ind 11348 . . . 4 (𝑗 ∈ ℕ0 → (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
129128com12 32 . . 3 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → (𝑗 ∈ ℕ0 → (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
130129ralrimiv 2948 . 2 (((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) ∧ ((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊)))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊))))
131130ex 449 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝐼 ∈ (0..^(#‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (#‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cn 10897  0cn0 11169  cz 11254  +crp 11708  ..^cfzo 12334   mod cmo 12530  #chash 12979  Word cword 13146   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386
This theorem is referenced by:  cshw1  13419  cshwsidrepsw  15638
  Copyright terms: Public domain W3C validator