MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm2 Structured version   Visualization version   GIF version

Theorem mulgghm2 19664
Description: The powers of a group element give a homomorphism from to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgghm2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mulgghm2 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑛   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgghm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝑅 ∈ Grp)
2 zringgrp 19642 . . 3 ring ∈ Grp
31, 2jctil 558 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp))
4 mulgghm2.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 mulgghm2.m . . . . . . 7 · = (.g𝑅)
64, 5mulgcl 17382 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
763expa 1257 . . . . 5 (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
87an32s 842 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵)
9 mulgghm2.f . . . 4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
108, 9fmptd 6292 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹:ℤ⟶𝐵)
11 eqid 2610 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
124, 5, 11mulgdir 17396 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
13123exp2 1277 . . . . . . 7 (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 ))))))
1413imp42 618 . . . . . 6 (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
1514an32s 842 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
16 zaddcl 11294 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
1716adantl 481 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
18 oveq1 6556 . . . . . . 7 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 ))
19 ovex 6577 . . . . . . 7 ((𝑥 + 𝑦) · 1 ) ∈ V
2018, 9, 19fvmpt 6191 . . . . . 6 ((𝑥 + 𝑦) ∈ ℤ → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 ))
2117, 20syl 17 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 ))
22 oveq1 6556 . . . . . . . 8 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
23 ovex 6577 . . . . . . . 8 (𝑥 · 1 ) ∈ V
2422, 9, 23fvmpt 6191 . . . . . . 7 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
25 oveq1 6556 . . . . . . . 8 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
26 ovex 6577 . . . . . . . 8 (𝑦 · 1 ) ∈ V
2725, 9, 26fvmpt 6191 . . . . . . 7 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
2824, 27oveqan12d 6568 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
2928adantl 481 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
3015, 21, 293eqtr4d 2654 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3130ralrimivva 2954 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3210, 31jca 553 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
33 zringbas 19643 . . 3 ℤ = (Base‘ℤring)
34 zringplusg 19644 . . 3 + = (+g‘ℤring)
3533, 4, 34, 11isghm 17483 . 2 (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))))
363, 32, 35sylanbrc 695 1 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549   + caddc 9818  cz 11254  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  .gcmg 17363   GrpHom cghm 17480  ringzring 19637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-cnfld 19568  df-zring 19638
This theorem is referenced by:  mulgrhm  19665  frgpcyg  19741
  Copyright terms: Public domain W3C validator