MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddmlem Structured version   Visualization version   GIF version

Theorem gcdaddmlem 15083
Description: Lemma for gcdaddm 15084. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
gcdaddmlem.1 𝐾 ∈ ℤ
gcdaddmlem.2 𝑀 ∈ ℤ
gcdaddmlem.3 𝑁 ∈ ℤ
Assertion
Ref Expression
gcdaddmlem (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))

Proof of Theorem gcdaddmlem
StepHypRef Expression
1 gcdaddmlem.2 . . . . . . 7 𝑀 ∈ ℤ
2 gcdaddmlem.3 . . . . . . 7 𝑁 ∈ ℤ
3 gcddvds 15063 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
41, 2, 3mp2an 704 . . . . . 6 ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)
54simpli 473 . . . . 5 (𝑀 gcd 𝑁) ∥ 𝑀
6 gcdcl 15066 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
71, 2, 6mp2an 704 . . . . . . . . 9 (𝑀 gcd 𝑁) ∈ ℕ0
87nn0zi 11279 . . . . . . . 8 (𝑀 gcd 𝑁) ∈ ℤ
9 gcdaddmlem.1 . . . . . . . . 9 𝐾 ∈ ℤ
10 1z 11284 . . . . . . . . 9 1 ∈ ℤ
11 dvds2ln 14852 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
129, 10, 11mpanl12 714 . . . . . . . 8 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
138, 1, 2, 12mp3an 1416 . . . . . . 7 (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
144, 13ax-mp 5 . . . . . 6 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))
15 zcn 11259 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
162, 15ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
1716mulid2i 9922 . . . . . . 7 (1 · 𝑁) = 𝑁
1817oveq2i 6560 . . . . . 6 ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
1914, 18breqtri 4608 . . . . 5 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)
20 zmulcl 11303 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
219, 1, 20mp2an 704 . . . . . . 7 (𝐾 · 𝑀) ∈ ℤ
22 zaddcl 11294 . . . . . . 7 (((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
2321, 2, 22mp2an 704 . . . . . 6 ((𝐾 · 𝑀) + 𝑁) ∈ ℤ
24 dvdslegcd 15064 . . . . . . 7 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2524ex 449 . . . . . 6 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
268, 1, 23, 25mp3an 1416 . . . . 5 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
275, 19, 26mp2ani 710 . . . 4 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
28 gcddvds 15063 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
291, 23, 28mp2an 704 . . . . . 6 ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁))
3029simpli 473 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀
31 gcdcl 15066 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
321, 23, 31mp2an 704 . . . . . . . . 9 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0
3332nn0zi 11279 . . . . . . . 8 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ
34 znegcl 11289 . . . . . . . . . 10 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
359, 34ax-mp 5 . . . . . . . . 9 -𝐾 ∈ ℤ
36 dvds2ln 14852 . . . . . . . . 9 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3735, 10, 36mpanl12 714 . . . . . . . 8 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3833, 1, 23, 37mp3an 1416 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
3929, 38ax-mp 5 . . . . . 6 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))
40 zcn 11259 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
419, 40ax-mp 5 . . . . . . . . 9 𝐾 ∈ ℂ
42 zcn 11259 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
431, 42ax-mp 5 . . . . . . . . 9 𝑀 ∈ ℂ
4441, 43mulneg1i 10355 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
45 zcn 11259 . . . . . . . . . 10 (((𝐾 · 𝑀) + 𝑁) ∈ ℤ → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
4623, 45ax-mp 5 . . . . . . . . 9 ((𝐾 · 𝑀) + 𝑁) ∈ ℂ
4746mulid2i 9922 . . . . . . . 8 (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
4844, 47oveq12i 6561 . . . . . . 7 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
4941, 43mulcli 9924 . . . . . . . . . 10 (𝐾 · 𝑀) ∈ ℂ
5049negcli 10228 . . . . . . . . . 10 -(𝐾 · 𝑀) ∈ ℂ
5149negidi 10229 . . . . . . . . . 10 ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0
5249, 50, 51addcomli 10107 . . . . . . . . 9 (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0
5352oveq1i 6559 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁)
5450, 49, 16addassi 9927 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
5516addid2i 10103 . . . . . . . 8 (0 + 𝑁) = 𝑁
5653, 54, 553eqtr3i 2640 . . . . . . 7 (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁
5748, 56eqtri 2632 . . . . . 6 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁
5839, 57breqtri 4608 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁
59 dvdslegcd 15064 . . . . . . 7 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6059ex 449 . . . . . 6 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6133, 1, 2, 60mp3an 1416 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6230, 58, 61mp2ani 710 . . . 4 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))
6327, 62anim12i 588 . . 3 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
648zrei 11260 . . . 4 (𝑀 gcd 𝑁) ∈ ℝ
6533zrei 11260 . . . 4 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ
6664, 65letri3i 10032 . . 3 ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6763, 66sylibr 223 . 2 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
68 pm4.57 517 . . 3 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)))
69 oveq2 6557 . . . . . . . . . 10 (𝑀 = 0 → (𝐾 · 𝑀) = (𝐾 · 0))
7041mul01i 10105 . . . . . . . . . 10 (𝐾 · 0) = 0
7169, 70syl6eq 2660 . . . . . . . . 9 (𝑀 = 0 → (𝐾 · 𝑀) = 0)
7271oveq1d 6564 . . . . . . . 8 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
7372, 55syl6eq 2660 . . . . . . 7 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
7473eqeq1d 2612 . . . . . 6 (𝑀 = 0 → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
7574pm5.32i 667 . . . . 5 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0))
76 oveq12 6558 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
77 oveq12 6558 . . . . . . 7 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7875, 77sylbir 224 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7976, 78eqtr4d 2647 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8075, 79sylbi 206 . . . 4 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8180, 79jaoi 393 . . 3 (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8268, 81sylbi 206 . 2 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8367, 82pm2.61i 175 1 (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  -cneg 10146  0cn0 11169  cz 11254  cdvds 14821   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  gcdaddm  15084
  Copyright terms: Public domain W3C validator