Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeoALTV Structured version   Visualization version   GIF version

Theorem opeoALTV 40133
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opeoALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )

Proof of Theorem opeoALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 40082 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 evenz 40081 . . 3 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
3 zaddcl 11294 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 493 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2614 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3034 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 40088 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3333 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2614 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = (2 · 𝑗) ↔ 𝐵 = (2 · 𝑗)))
109rexbidv 3034 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗) ↔ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
11 dfeven4 40089 . . . . . 6 Even = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗)}
1210, 11elrab2 3333 . . . . 5 (𝐵 ∈ Even ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
13 zaddcl 11294 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 449 . . . . . . . . . . . . 13 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 763 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 444 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 480 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝑖 + 𝑗) ∈ ℤ)
18 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = (𝑖 + 𝑗) → (2 · 𝑛) = (2 · (𝑖 + 𝑗)))
1918oveq1d 6564 . . . . . . . . . . . 12 (𝑛 = (𝑖 + 𝑗) → ((2 · 𝑛) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
2019eqeq2d 2620 . . . . . . . . . . 11 (𝑛 = (𝑖 + 𝑗) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
2120adantl 481 . . . . . . . . . 10 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) ∧ 𝑛 = (𝑖 + 𝑗)) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
22 oveq12 6558 . . . . . . . . . . . . . 14 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
2322ex 449 . . . . . . . . . . . . 13 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2423ad3antlr 763 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2524imp 444 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
26 2cnd 10970 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
27 zcn 11259 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2827adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
2926, 28mulcld 9939 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
3029ancoms 468 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
31 1cnd 9935 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 1 ∈ ℂ)
32 2cnd 10970 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 2 ∈ ℂ)
33 zcn 11259 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
34 mulcl 9899 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3532, 33, 34syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℂ)
3630, 31, 35add32d 10142 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = (((2 · 𝑖) + (2 · 𝑗)) + 1))
37 2cnd 10970 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 2 ∈ ℂ)
3827adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∈ ℂ)
3933adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
4037, 38, 39adddid 9943 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4140eqcomd 2616 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((2 · 𝑖) + (2 · 𝑗)) = (2 · (𝑖 + 𝑗)))
4241oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + (2 · 𝑗)) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
4336, 42eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4443ex 449 . . . . . . . . . . . . . 14 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4544ad3antlr 763 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4645imp 444 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4746adantr 480 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4825, 47eqtrd 2644 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1))
4917, 21, 48rspcedvd 3289 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
5049ex 449 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5150rexlimdva 3013 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5251expimpd 627 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5352r19.29an 3059 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5412, 53syl5bi 231 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
558, 54sylbi 206 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5655imp 444 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
57 eqeq1 2614 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5857rexbidv 3034 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
59 dfodd6 40088 . . 3 Odd = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1)}
6058, 59elrab2 3333 . 2 ((𝐴 + 𝐵) ∈ Odd ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
614, 56, 60sylanbrc 695 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  2c2 10947  cz 11254   Even ceven 40075   Odd codd 40076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-even 40077  df-odd 40078
This theorem is referenced by:  omeoALTV  40135  epoo  40150
  Copyright terms: Public domain W3C validator