Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expghm | Structured version Visualization version GIF version |
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
expghm.m | ⊢ 𝑀 = (mulGrp‘ℂfld) |
expghm.u | ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
expghm | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expclzlem 12746 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) | |
2 | 1 | 3expa 1257 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) |
3 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) | |
4 | 2, 3 | fmptd 6292 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0})) |
5 | expaddz 12766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) | |
6 | zaddcl 11294 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
8 | oveq2 6557 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 𝑧))) | |
9 | ovex 6577 | . . . . . 6 ⊢ (𝐴↑(𝑦 + 𝑧)) ∈ V | |
10 | 8, 3, 9 | fvmpt 6191 | . . . . 5 ⊢ ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
12 | oveq2 6557 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
13 | ovex 6577 | . . . . . . 7 ⊢ (𝐴↑𝑦) ∈ V | |
14 | 12, 3, 13 | fvmpt 6191 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) = (𝐴↑𝑦)) |
15 | oveq2 6557 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐴↑𝑥) = (𝐴↑𝑧)) | |
16 | ovex 6577 | . . . . . . 7 ⊢ (𝐴↑𝑧) ∈ V | |
17 | 15, 3, 16 | fvmpt 6191 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧) = (𝐴↑𝑧)) |
18 | 14, 17 | oveqan12d 6568 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
19 | 18 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
20 | 5, 11, 19 | 3eqtr4d 2654 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
21 | 20 | ralrimivva 2954 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
22 | zringgrp 19642 | . . . 4 ⊢ ℤring ∈ Grp | |
23 | cnring 19587 | . . . . 5 ⊢ ℂfld ∈ Ring | |
24 | cnfldbas 19571 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
25 | cnfld0 19589 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
26 | cndrng 19594 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
27 | 24, 25, 26 | drngui 18576 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
28 | expghm.u | . . . . . . 7 ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) | |
29 | expghm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘ℂfld) | |
30 | 29 | oveq1i 6559 | . . . . . . 7 ⊢ (𝑀 ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
31 | 28, 30 | eqtri 2632 | . . . . . 6 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
32 | 27, 31 | unitgrp 18490 | . . . . 5 ⊢ (ℂfld ∈ Ring → 𝑈 ∈ Grp) |
33 | 23, 32 | ax-mp 5 | . . . 4 ⊢ 𝑈 ∈ Grp |
34 | 22, 33 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
35 | zringbas 19643 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
36 | difss 3699 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
37 | 29, 24 | mgpbas 18318 | . . . . . 6 ⊢ ℂ = (Base‘𝑀) |
38 | 28, 37 | ressbas2 15758 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈)) |
39 | 36, 38 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑈) |
40 | zringplusg 19644 | . . . 4 ⊢ + = (+g‘ℤring) | |
41 | fvex 6113 | . . . . . 6 ⊢ (Unit‘ℂfld) ∈ V | |
42 | 27, 41 | eqeltri 2684 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
43 | cnfldmul 19573 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
44 | 29, 43 | mgpplusg 18316 | . . . . . 6 ⊢ · = (+g‘𝑀) |
45 | 28, 44 | ressplusg 15818 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑈)) |
46 | 42, 45 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑈) |
47 | 35, 39, 40, 46 | isghm 17483 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))))) |
48 | 34, 47 | mpbiran 955 | . 2 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)))) |
49 | 4, 21, 48 | sylanbrc 695 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 Vcvv 3173 ∖ cdif 3537 ⊆ wss 3540 {csn 4125 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 0cc0 9815 + caddc 9818 · cmul 9820 ℤcz 11254 ↑cexp 12722 Basecbs 15695 ↾s cress 15696 +gcplusg 15768 Grpcgrp 17245 GrpHom cghm 17480 mulGrpcmgp 18312 Ringcrg 18370 Unitcui 18462 ℂfldccnfld 19567 ℤringzring 19637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-seq 12664 df-exp 12723 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-subg 17414 df-ghm 17481 df-cmn 18018 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-subrg 18601 df-cnfld 19568 df-zring 19638 |
This theorem is referenced by: lgseisenlem4 24903 |
Copyright terms: Public domain | W3C validator |