Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsn1add | Structured version Visualization version GIF version |
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀, then 𝐾 does not divide (𝑀 + 𝑁). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvdsn1add | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1054 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
2 | zaddcl 11294 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
3 | 2 | 3adant1 1072 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
4 | simp3 1056 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | 1, 3, 4 | 3jca 1235 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | 5 | ad2antrr 758 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | pm3.22 464 | . . . . . . 7 ⊢ ((𝐾 ∥ 𝑁 ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) | |
8 | 7 | adantll 746 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) |
9 | dvds2sub 14854 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁))) | |
10 | 6, 8, 9 | sylc 63 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁)) |
11 | zcn 11259 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
12 | 11 | 3ad2ant2 1076 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
13 | 12 | ad2antrr 758 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑀 ∈ ℂ) |
14 | 4 | zcnd 11359 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
15 | 14 | ad2antrr 758 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑁 ∈ ℂ) |
16 | 13, 15 | pncand 10272 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
17 | 10, 16 | breqtrd 4609 | . . . 4 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
18 | 17 | adantlrl 752 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
19 | simplrl 796 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ¬ 𝐾 ∥ 𝑀) | |
20 | 18, 19 | pm2.65da 598 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ¬ 𝐾 ∥ (𝑀 + 𝑁)) |
21 | 20 | ex 449 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1031 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 ℂcc 9813 + caddc 9818 − cmin 10145 ℤcz 11254 ∥ cdvds 14821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-dvds 14822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |