Proof of Theorem ccatsymb
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
2 | 1 | 3adant3 1074 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
3 | 2 | ad2antrl 760 |
. . . . . . 7
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
4 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → 𝐼 < (#‘𝐴)) |
5 | 4 | anim2i 591 |
. . . . . . . 8
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (0 ≤ 𝐼 ∧ 𝐼 < (#‘𝐴))) |
6 | | simp3 1056 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ) |
7 | | 0zd 11266 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → 0 ∈
ℤ) |
8 | | lencl 13179 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈
ℕ0) |
9 | 8 | nn0zd 11356 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℤ) |
10 | 9 | 3ad2ant1 1075 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (#‘𝐴) ∈
ℤ) |
11 | 6, 7, 10 | 3jca 1235 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧
(#‘𝐴) ∈
ℤ)) |
12 | 11 | ad2antrl 760 |
. . . . . . . . 9
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧
(#‘𝐴) ∈
ℤ)) |
13 | | elfzo 12341 |
. . . . . . . . 9
⊢ ((𝐼 ∈ ℤ ∧ 0 ∈
ℤ ∧ (#‘𝐴)
∈ ℤ) → (𝐼
∈ (0..^(#‘𝐴))
↔ (0 ≤ 𝐼 ∧
𝐼 < (#‘𝐴)))) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐼 ∈ (0..^(#‘𝐴)) ↔ (0 ≤ 𝐼 ∧ 𝐼 < (#‘𝐴)))) |
15 | 5, 14 | mpbird 246 |
. . . . . . 7
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → 𝐼 ∈ (0..^(#‘𝐴))) |
16 | | df-3an 1033 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(#‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(#‘𝐴)))) |
17 | 3, 15, 16 | sylanbrc 695 |
. . . . . 6
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(#‘𝐴)))) |
18 | | ccatval1 13214 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(#‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴‘𝐼)) |
19 | 18 | eqcomd 2616 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(#‘𝐴))) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼)) |
20 | 17, 19 | syl 17 |
. . . . 5
⊢ ((0 ≤
𝐼 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼)) |
21 | 20 | ex 449 |
. . . 4
⊢ (0 ≤
𝐼 → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼))) |
22 | | zre 11258 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℤ → 𝐼 ∈
ℝ) |
23 | | 0red 9920 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℤ → 0 ∈
ℝ) |
24 | 22, 23 | jca 553 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℤ → (𝐼 ∈ ℝ ∧ 0 ∈
ℝ)) |
25 | 24 | 3ad2ant3 1077 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 0 ∈
ℝ)) |
26 | | ltnle 9996 |
. . . . . . . 8
⊢ ((𝐼 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐼 < 0
↔ ¬ 0 ≤ 𝐼)) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼)) |
28 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
29 | 28 | 3adant2 1073 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
31 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → 𝐼 < 0) |
32 | 31 | orcd 406 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (#‘𝐴) ≤ 𝐼)) |
33 | | wrdsymb0 13194 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (#‘𝐴) ≤ 𝐼) → (𝐴‘𝐼) = ∅)) |
34 | 30, 32, 33 | sylc 63 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴‘𝐼) = ∅) |
35 | | ccatcl 13212 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
36 | 35 | 3adant3 1074 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
37 | 36, 6 | jca 553 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
39 | 31 | orcd 406 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼)) |
40 | | wrdsymb0 13194 |
. . . . . . . . . 10
⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)) |
41 | 38, 39, 40 | sylc 63 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅) |
42 | 34, 41 | eqtr4d 2647 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼)) |
43 | 42 | ex 449 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼))) |
44 | 27, 43 | sylbird 249 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼))) |
45 | 44 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (¬ 0 ≤ 𝐼 → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼))) |
46 | 45 | com12 32 |
. . . 4
⊢ (¬ 0
≤ 𝐼 → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼))) |
47 | 21, 46 | pm2.61i 175 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴‘𝐼) = ((𝐴 ++ 𝐵)‘𝐼)) |
48 | 2 | ad2antrl 760 |
. . . . . . . 8
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
49 | 8 | nn0red 11229 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℝ) |
50 | | lenlt 9995 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐴) ∈
ℝ ∧ 𝐼 ∈
ℝ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴))) |
51 | 49, 22, 50 | syl2an 493 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴))) |
52 | 51 | 3adant2 1073 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴))) |
53 | 52 | biimpar 501 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (#‘𝐴) ≤ 𝐼) |
54 | 53 | anim2i 591 |
. . . . . . . . . 10
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ (#‘𝐴) ≤ 𝐼)) |
55 | 54 | ancomd 466 |
. . . . . . . . 9
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → ((#‘𝐴) ≤ 𝐼 ∧ 𝐼 < ((#‘𝐴) + (#‘𝐵)))) |
56 | | lencl 13179 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈
ℕ0) |
57 | 56 | nn0zd 11356 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℤ) |
58 | | zaddcl 11294 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐴) ∈
ℤ ∧ (#‘𝐵)
∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ) |
59 | 9, 57, 58 | syl2an 493 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ) |
60 | 59 | 3adant3 1074 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ) |
61 | 6, 10, 60 | 3jca 1235 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧
((#‘𝐴) +
(#‘𝐵)) ∈
ℤ)) |
62 | 61 | ad2antrl 760 |
. . . . . . . . . 10
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧
((#‘𝐴) +
(#‘𝐵)) ∈
ℤ)) |
63 | | elfzo 12341 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ ℤ ∧
(#‘𝐴) ∈ ℤ
∧ ((#‘𝐴) +
(#‘𝐵)) ∈
ℤ) → (𝐼 ∈
((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ ((#‘𝐴) ≤ 𝐼 ∧ 𝐼 < ((#‘𝐴) + (#‘𝐵))))) |
64 | 62, 63 | syl 17 |
. . . . . . . . 9
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ ((#‘𝐴) ≤ 𝐼 ∧ 𝐼 < ((#‘𝐴) + (#‘𝐵))))) |
65 | 55, 64 | mpbird 246 |
. . . . . . . 8
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) |
66 | | df-3an 1033 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))))) |
67 | 48, 65, 66 | sylanbrc 695 |
. . . . . . 7
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))))) |
68 | | ccatval2 13215 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))) |
69 | 67, 68 | syl 17 |
. . . . . 6
⊢ ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))) |
70 | 69 | ex 449 |
. . . . 5
⊢ (𝐼 < ((#‘𝐴) + (#‘𝐵)) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))) |
71 | 56 | nn0red 11229 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℝ) |
72 | | readdcl 9898 |
. . . . . . . . . . 11
⊢
(((#‘𝐴) ∈
ℝ ∧ (#‘𝐵)
∈ ℝ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ) |
73 | 49, 71, 72 | syl2an 493 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ) |
74 | 73 | 3adant3 1074 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ) |
75 | 22 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℝ) |
76 | 74, 75 | lenltd 10062 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((#‘𝐴) + (#‘𝐵)))) |
77 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ)) |
78 | | ccatlen 13213 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵))) |
79 | 78 | 3adant3 1074 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵))) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵))) |
81 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) |
82 | 80, 81 | eqbrtrd 4605 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘(𝐴 ++ 𝐵)) ≤ 𝐼) |
83 | 82 | olcd 407 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼)) |
84 | 77, 83, 40 | sylc 63 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅) |
85 | | simp2 1055 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉) |
86 | | zsubcl 11296 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ ℤ ∧
(#‘𝐴) ∈ ℤ)
→ (𝐼 −
(#‘𝐴)) ∈
ℤ) |
87 | 9, 86 | sylan2 490 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ Word 𝑉) → (𝐼 − (#‘𝐴)) ∈ ℤ) |
88 | 87 | ancoms 468 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 − (#‘𝐴)) ∈ ℤ) |
89 | 88 | 3adant2 1073 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐼 − (#‘𝐴)) ∈ ℤ) |
90 | 85, 89 | jca 553 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ)) |
91 | 90 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ)) |
92 | | leaddsub2 10384 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐴) ∈
ℝ ∧ (#‘𝐵)
∈ ℝ ∧ 𝐼
∈ ℝ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ (#‘𝐵) ≤ (𝐼 − (#‘𝐴)))) |
93 | 49, 71, 22, 92 | syl3an 1360 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ (#‘𝐵) ≤ (𝐼 − (#‘𝐴)))) |
94 | 93 | biimpa 500 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘𝐵) ≤ (𝐼 − (#‘𝐴))) |
95 | 94 | olcd 407 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐼 − (#‘𝐴)) < 0 ∨ (#‘𝐵) ≤ (𝐼 − (#‘𝐴)))) |
96 | | wrdsymb0 13194 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ) → (((𝐼 − (#‘𝐴)) < 0 ∨ (#‘𝐵) ≤ (𝐼 − (#‘𝐴))) → (𝐵‘(𝐼 − (#‘𝐴))) = ∅)) |
97 | 91, 95, 96 | sylc 63 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (#‘𝐴))) = ∅) |
98 | 84, 97 | eqtr4d 2647 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))) |
99 | 98 | ex 449 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))) |
100 | 76, 99 | sylbird 249 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → (¬ 𝐼 < ((#‘𝐴) + (#‘𝐵)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))) |
101 | 100 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (¬ 𝐼 < ((#‘𝐴) + (#‘𝐵)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))) |
102 | 101 | com12 32 |
. . . . 5
⊢ (¬
𝐼 < ((#‘𝐴) + (#‘𝐵)) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))) |
103 | 70, 102 | pm2.61i 175 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))) |
104 | 103 | eqcomd 2616 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (𝐵‘(𝐼 − (#‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)) |
105 | 47, 104 | ifeqda 4071 |
. 2
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → if(𝐼 < (#‘𝐴), (𝐴‘𝐼), (𝐵‘(𝐼 − (#‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼)) |
106 | 105 | eqcomd 2616 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (#‘𝐴), (𝐴‘𝐼), (𝐵‘(𝐼 − (#‘𝐴))))) |