MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Visualization version   GIF version

Theorem cygznlem3 19737
Description: A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem3 (𝜑𝐺𝑔 𝑌)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem3
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (Base‘𝑌) = (Base‘𝑌)
2 cygzn.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2610 . . . 4 (+g𝑌) = (+g𝑌)
4 eqid 2610 . . . 4 (+g𝐺) = (+g𝐺)
5 cygzn.n . . . . . 6 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0)
6 hashcl 13009 . . . . . . . 8 (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0)
76adantl 481 . . . . . . 7 ((𝜑𝐵 ∈ Fin) → (#‘𝐵) ∈ ℕ0)
8 0nn0 11184 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
107, 9ifclda 4070 . . . . . 6 (𝜑 → if(𝐵 ∈ Fin, (#‘𝐵), 0) ∈ ℕ0)
115, 10syl5eqel 2692 . . . . 5 (𝜑𝑁 ∈ ℕ0)
12 cygzn.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
1312zncrng 19712 . . . . 5 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
14 crngring 18381 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
15 ringgrp 18375 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
1611, 13, 14, 154syl 19 . . . 4 (𝜑𝑌 ∈ Grp)
17 cygzn.g . . . . 5 (𝜑𝐺 ∈ CycGrp)
18 cyggrp 18114 . . . . 5 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1917, 18syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
20 cygzn.m . . . . 5 · = (.g𝐺)
21 cygzn.l . . . . 5 𝐿 = (ℤRHom‘𝑌)
22 cygzn.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
23 cygzn.x . . . . 5 (𝜑𝑋𝐸)
24 cygzn.f . . . . 5 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 19735 . . . 4 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
2612, 1, 21znzrhfo 19715 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
2711, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
28 foelrn 6286 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
2927, 28sylan 487 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝑌)) → ∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖))
30 foelrn 6286 . . . . . . 7 ((𝐿:ℤ–onto→(Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3127, 30sylan 487 . . . . . 6 ((𝜑𝑏 ∈ (Base‘𝑌)) → ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))
3229, 31anim12dan 878 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
33 reeanv 3086 . . . . . . 7 (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) ↔ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)))
3419adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐺 ∈ Grp)
35 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑖 ∈ ℤ)
36 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑗 ∈ ℤ)
372, 20, 22iscyggen 18105 . . . . . . . . . . . . . 14 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3837simplbi 475 . . . . . . . . . . . . 13 (𝑋𝐸𝑋𝐵)
3923, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝑋𝐵)
412, 20, 4mulgdir 17396 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4234, 35, 36, 40, 41syl13anc 1320 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑖 + 𝑗) · 𝑋) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
4311, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ CRing)
4421zrhrhm 19679 . . . . . . . . . . . . . . 15 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
45 rhmghm 18548 . . . . . . . . . . . . . . 15 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
4643, 14, 44, 454syl 19 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (ℤring GrpHom 𝑌))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → 𝐿 ∈ (ℤring GrpHom 𝑌))
48 zringbas 19643 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
49 zringplusg 19644 . . . . . . . . . . . . . 14 + = (+g‘ℤring)
5048, 49, 3ghmlin 17488 . . . . . . . . . . . . 13 ((𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5147, 35, 36, 50syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐿‘(𝑖 + 𝑗)) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
5251fveq2d 6107 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
53 zaddcl 11294 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19736 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 𝑗) ∈ ℤ) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5553, 54sylan2 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿‘(𝑖 + 𝑗))) = ((𝑖 + 𝑗) · 𝑋))
5652, 55eqtr3d 2646 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝑖 + 𝑗) · 𝑋))
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19736 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℤ) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
5857adantrr 749 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑖)) = (𝑖 · 𝑋))
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 19736 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6059adantrl 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
6158, 60oveq12d 6567 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))) = ((𝑖 · 𝑋)(+g𝐺)(𝑗 · 𝑋)))
6242, 56, 613eqtr4d 2654 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
63 oveq12 6558 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎(+g𝑌)𝑏) = ((𝐿𝑖)(+g𝑌)(𝐿𝑗)))
6463fveq2d 6107 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))))
65 fveq2 6103 . . . . . . . . . . 11 (𝑎 = (𝐿𝑖) → (𝐹𝑎) = (𝐹‘(𝐿𝑖)))
66 fveq2 6103 . . . . . . . . . . 11 (𝑏 = (𝐿𝑗) → (𝐹𝑏) = (𝐹‘(𝐿𝑗)))
6765, 66oveqan12d 6568 . . . . . . . . . 10 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗))))
6864, 67eqeq12d 2625 . . . . . . . . 9 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ↔ (𝐹‘((𝐿𝑖)(+g𝑌)(𝐿𝑗))) = ((𝐹‘(𝐿𝑖))(+g𝐺)(𝐹‘(𝐿𝑗)))))
6962, 68syl5ibrcom 236 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7069rexlimdvva 3020 . . . . . . 7 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7133, 70syl5bir 232 . . . . . 6 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏))))
7271imp 444 . . . . 5 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
7332, 72syldan 486 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
741, 2, 3, 4, 16, 19, 25, 73isghmd 17492 . . 3 (𝜑𝐹 ∈ (𝑌 GrpHom 𝐺))
7558, 60eqeq12d 2625 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 19734 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐿𝑖) = (𝐿𝑗) ↔ (𝑖 · 𝑋) = (𝑗 · 𝑋)))
7775, 76bitr4d 270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) ↔ (𝐿𝑖) = (𝐿𝑗)))
7877biimpd 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗)))
7965, 66eqeqan12d 2626 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗))))
80 eqeq12 2623 . . . . . . . . . . . 12 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (𝑎 = 𝑏 ↔ (𝐿𝑖) = (𝐿𝑗)))
8179, 80imbi12d 333 . . . . . . . . . . 11 ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → (((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏) ↔ ((𝐹‘(𝐿𝑖)) = (𝐹‘(𝐿𝑗)) → (𝐿𝑖) = (𝐿𝑗))))
8278, 81syl5ibrcom 236 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8382rexlimdvva 3020 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ ℤ ∃𝑗 ∈ ℤ (𝑎 = (𝐿𝑖) ∧ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8433, 83syl5bir 232 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8584imp 444 . . . . . . 7 ((𝜑 ∧ (∃𝑖 ∈ ℤ 𝑎 = (𝐿𝑖) ∧ ∃𝑗 ∈ ℤ 𝑏 = (𝐿𝑗))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8632, 85syldan 486 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
8786ralrimivva 2954 . . . . 5 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
88 dff13 6416 . . . . 5 (𝐹:(Base‘𝑌)–1-1𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
8925, 87, 88sylanbrc 695 . . . 4 (𝜑𝐹:(Base‘𝑌)–1-1𝐵)
902, 20, 22iscyggen2 18106 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9119, 90syl 17 . . . . . . . 8 (𝜑 → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))))
9223, 91mpbid 221 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋)))
9392simprd 478 . . . . . 6 (𝜑 → ∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋))
94 oveq1 6556 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 · 𝑋) = (𝑗 · 𝑋))
9594eqeq2d 2620 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑧 = (𝑛 · 𝑋) ↔ 𝑧 = (𝑗 · 𝑋)))
9695cbvrexv 3148 . . . . . . . 8 (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) ↔ ∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋))
9727adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝐿:ℤ–onto→(Base‘𝑌))
98 fof 6028 . . . . . . . . . . . . 13 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
9997, 98syl 17 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝐿:ℤ⟶(Base‘𝑌))
10099ffvelrnda 6267 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐿𝑗) ∈ (Base‘𝑌))
10159adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝐹‘(𝐿𝑗)) = (𝑗 · 𝑋))
102101eqcomd 2616 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗)))
103 fveq2 6103 . . . . . . . . . . . . 13 (𝑎 = (𝐿𝑗) → (𝐹𝑎) = (𝐹‘(𝐿𝑗)))
104103eqeq2d 2620 . . . . . . . . . . . 12 (𝑎 = (𝐿𝑗) → ((𝑗 · 𝑋) = (𝐹𝑎) ↔ (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗))))
105104rspcev 3282 . . . . . . . . . . 11 (((𝐿𝑗) ∈ (Base‘𝑌) ∧ (𝑗 · 𝑋) = (𝐹‘(𝐿𝑗))) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
106100, 102, 105syl2anc 691 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎))
107 eqeq1 2614 . . . . . . . . . . 11 (𝑧 = (𝑗 · 𝑋) → (𝑧 = (𝐹𝑎) ↔ (𝑗 · 𝑋) = (𝐹𝑎)))
108107rexbidv 3034 . . . . . . . . . 10 (𝑧 = (𝑗 · 𝑋) → (∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎) ↔ ∃𝑎 ∈ (Base‘𝑌)(𝑗 · 𝑋) = (𝐹𝑎)))
109106, 108syl5ibrcom 236 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑗 ∈ ℤ) → (𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
110109rexlimdva 3013 . . . . . . . 8 ((𝜑𝑧𝐵) → (∃𝑗 ∈ ℤ 𝑧 = (𝑗 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11196, 110syl5bi 231 . . . . . . 7 ((𝜑𝑧𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∃𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
112111ralimdva 2945 . . . . . 6 (𝜑 → (∀𝑧𝐵𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑋) → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11393, 112mpd 15 . . . . 5 (𝜑 → ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎))
114 dffo3 6282 . . . . 5 (𝐹:(Base‘𝑌)–onto𝐵 ↔ (𝐹:(Base‘𝑌)⟶𝐵 ∧ ∀𝑧𝐵𝑎 ∈ (Base‘𝑌)𝑧 = (𝐹𝑎)))
11525, 113, 114sylanbrc 695 . . . 4 (𝜑𝐹:(Base‘𝑌)–onto𝐵)
116 df-f1o 5811 . . . 4 (𝐹:(Base‘𝑌)–1-1-onto𝐵 ↔ (𝐹:(Base‘𝑌)–1-1𝐵𝐹:(Base‘𝑌)–onto𝐵))
11789, 115, 116sylanbrc 695 . . 3 (𝜑𝐹:(Base‘𝑌)–1-1-onto𝐵)
1181, 2isgim 17527 . . 3 (𝐹 ∈ (𝑌 GrpIso 𝐺) ↔ (𝐹 ∈ (𝑌 GrpHom 𝐺) ∧ 𝐹:(Base‘𝑌)–1-1-onto𝐵))
11974, 117, 118sylanbrc 695 . 2 (𝜑𝐹 ∈ (𝑌 GrpIso 𝐺))
120 brgici 17535 . 2 (𝐹 ∈ (𝑌 GrpIso 𝐺) → 𝑌𝑔 𝐺)
121 gicsym 17539 . 2 (𝑌𝑔 𝐺𝐺𝑔 𝑌)
122119, 120, 1213syl 18 1 (𝜑𝐺𝑔 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  ifcif 4036  cop 4131   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815   + caddc 9818  0cn0 11169  cz 11254  #chash 12979  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  .gcmg 17363   GrpHom cghm 17480   GrpIso cgim 17522  𝑔 cgic 17523  CycGrpccyg 18102  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  ringzring 19637  ℤRHomczrh 19667  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-gim 17524  df-gic 17525  df-od 17771  df-cmn 18018  df-abl 18019  df-cyg 18103  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674
This theorem is referenced by:  cygzn  19738
  Copyright terms: Public domain W3C validator