Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 17525
 Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 17523 . 2 class 𝑔
2 cgim 17522 . . . 4 class GrpIso
32ccnv 5037 . . 3 class GrpIso
4 cvv 3173 . . . 4 class V
5 c1o 7440 . . . 4 class 1𝑜
64, 5cdif 3537 . . 3 class (V ∖ 1𝑜)
73, 6cima 5041 . 2 class ( GrpIso “ (V ∖ 1𝑜))
81, 7wceq 1475 1 wff 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
 Colors of variables: wff setvar class This definition is referenced by:  brgic  17534  gicer  17541  gicerOLD  17542
 Copyright terms: Public domain W3C validator