MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Unicode version

Theorem cygznlem3 18368
Description: A cyclic group with  n elements is isomorphic to  ZZ  /  n ZZ. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
cygzn.f  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
Assertion
Ref Expression
cygznlem3  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Distinct variable groups:    m, n, x, B    m, G, n, x    .x. , m, n, x   
m, Y, n, x   
m, L, n, x   
x, N    ph, m    n, F, x    m, X, n, x
Allowed substitution hints:    ph( x, n)    E( x, m, n)    F( m)    N( m, n)

Proof of Theorem cygznlem3
Dummy variables  a 
b  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
2 cygzn.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2460 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
4 eqid 2460 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
5 cygzn.n . . . . . 6  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
6 hashcl 12383 . . . . . . . 8  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
76adantl 466 . . . . . . 7  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
8 0nn0 10799 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
107, 9ifclda 3964 . . . . . 6  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
115, 10syl5eqel 2552 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
12 cygzn.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
1312zncrng 18343 . . . . 5  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
14 crngrng 16989 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
15 rnggrp 16984 . . . . 5  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
1611, 13, 14, 154syl 21 . . . 4  |-  ( ph  ->  Y  e.  Grp )
17 cygzn.g . . . . 5  |-  ( ph  ->  G  e. CycGrp )
18 cyggrp 16676 . . . . 5  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1917, 18syl 16 . . . 4  |-  ( ph  ->  G  e.  Grp )
20 cygzn.m . . . . 5  |-  .x.  =  (.g
`  G )
21 cygzn.l . . . . 5  |-  L  =  ( ZRHom `  Y
)
22 cygzn.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
23 cygzn.x . . . . 5  |-  ( ph  ->  X  e.  E )
24 cygzn.f . . . . 5  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 18366 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) --> B )
2612, 1, 21znzrhfo 18346 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
2711, 26syl 16 . . . . . . 7  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Y ) )
28 foelrn 6031 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  a  e.  ( Base `  Y ) )  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
2927, 28sylan 471 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
30 foelrn 6031 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3127, 30sylan 471 . . . . . 6  |-  ( (
ph  /\  b  e.  ( Base `  Y )
)  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3229, 31anim12dan 834 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
33 reeanv 3022 . . . . . . 7  |-  ( E. i  e.  ZZ  E. j  e.  ZZ  (
a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  <->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
3419adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  G  e.  Grp )
35 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
i  e.  ZZ )
36 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
j  e.  ZZ )
372, 20, 22iscyggen 16667 . . . . . . . . . . . . . 14  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3837simplbi 460 . . . . . . . . . . . . 13  |-  ( X  e.  E  ->  X  e.  B )
3923, 38syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
4039adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  X  e.  B )
412, 20, 4mulgdir 15960 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( i  e.  ZZ  /\  j  e.  ZZ  /\  X  e.  B )
)  ->  ( (
i  +  j ) 
.x.  X )  =  ( ( i  .x.  X ) ( +g  `  G ) ( j 
.x.  X ) ) )
4234, 35, 36, 40, 41syl13anc 1225 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( i  +  j )  .x.  X
)  =  ( ( i  .x.  X ) ( +g  `  G
) ( j  .x.  X ) ) )
4311, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Y  e.  CRing )
4421zrhrhm 18309 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
45 rhmghm 17151 . . . . . . . . . . . . . . 15  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  (ring  GrpHom  Y ) )
4643, 14, 44, 454syl 21 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  (ring  GrpHom  Y ) )
4746adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  L  e.  (ring  GrpHom  Y ) )
48 zringbas 18255 . . . . . . . . . . . . . 14  |-  ZZ  =  ( Base ` ring )
49 zringplusg 18256 . . . . . . . . . . . . . 14  |-  +  =  ( +g  ` ring )
5048, 49, 3ghmlin 16060 . . . . . . . . . . . . 13  |-  ( ( L  e.  (ring  GrpHom  Y )  /\  i  e.  ZZ  /\  j  e.  ZZ )  ->  ( L `  ( i  +  j ) )  =  ( ( L `  i
) ( +g  `  Y
) ( L `  j ) ) )
5147, 35, 36, 50syl3anc 1223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( L `  (
i  +  j ) )  =  ( ( L `  i ) ( +g  `  Y
) ( L `  j ) ) )
5251fveq2d 5861 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( F `
 ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) ) )
53 zaddcl 10892 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  ( i  +  j )  e.  ZZ )
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18367 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  +  j )  e.  ZZ )  ->  ( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j )  .x.  X
) )
5553, 54sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j ) 
.x.  X ) )
5652, 55eqtr3d 2503 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( i  +  j )  .x.  X ) )
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18367 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ZZ )  ->  ( F `
 ( L `  i ) )  =  ( i  .x.  X
) )
5857adantrr 716 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  i )
)  =  ( i 
.x.  X ) )
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18367 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ZZ )  ->  ( F `
 ( L `  j ) )  =  ( j  .x.  X
) )
6059adantrl 715 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  j )
)  =  ( j 
.x.  X ) )
6158, 60oveq12d 6293 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) )  =  ( ( i  .x.  X
) ( +g  `  G
) ( j  .x.  X ) ) )
6242, 56, 613eqtr4d 2511 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
63 oveq12 6284 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a ( +g  `  Y ) b )  =  ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) )
6463fveq2d 5861 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( F `  (
a ( +g  `  Y
) b ) )  =  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) ) )
65 fveq2 5857 . . . . . . . . . . 11  |-  ( a  =  ( L `  i )  ->  ( F `  a )  =  ( F `  ( L `  i ) ) )
66 fveq2 5857 . . . . . . . . . . 11  |-  ( b  =  ( L `  j )  ->  ( F `  b )  =  ( F `  ( L `  j ) ) )
6765, 66oveqan12d 6294 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
6864, 67eqeq12d 2482 . . . . . . . . 9  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) )  <->  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) )  =  ( ( F `  ( L `
 i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) ) ) )
6962, 68syl5ibrcom 222 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7069rexlimdvva 2955 . . . . . . 7  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7133, 70syl5bir 218 . . . . . 6  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7271imp 429 . . . . 5  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
7332, 72syldan 470 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
741, 2, 3, 4, 16, 19, 25, 73isghmd 16064 . . 3  |-  ( ph  ->  F  e.  ( Y 
GrpHom  G ) )
7558, 60eqeq12d 2482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( i  .x.  X )  =  ( j  .x.  X ) ) )
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 18365 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( L `  i )  =  ( L `  j )  <-> 
( i  .x.  X
)  =  ( j 
.x.  X ) ) )
7775, 76bitr4d 256 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( L `  i )  =  ( L `  j ) ) )
7877biimpd 207 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  -> 
( L `  i
)  =  ( L `
 j ) ) )
7965, 66eqeqan12d 2483 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( F `  ( L `  i )
)  =  ( F `
 ( L `  j ) ) ) )
80 eqeq12 2479 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a  =  b  <-> 
( L `  i
)  =  ( L `
 j ) ) )
8179, 80imbi12d 320 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b )  <->  ( ( F `  ( L `  i ) )  =  ( F `  ( L `  j )
)  ->  ( L `  i )  =  ( L `  j ) ) ) )
8278, 81syl5ibrcom 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8382rexlimdvva 2955 . . . . . . . . 9  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8433, 83syl5bir 218 . . . . . . . 8  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8584imp 429 . . . . . . 7  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) )
8632, 85syldan 470 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
8786ralrimivva 2878 . . . . 5  |-  ( ph  ->  A. a  e.  (
Base `  Y ) A. b  e.  ( Base `  Y ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
88 dff13 6145 . . . . 5  |-  ( F : ( Base `  Y
) -1-1-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. a  e.  ( Base `  Y
) A. b  e.  ( Base `  Y
) ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) ) )
8925, 87, 88sylanbrc 664 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -1-1-> B )
902, 20, 22iscyggen2 16668 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9119, 90syl 16 . . . . . . . 8  |-  ( ph  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9223, 91mpbid 210 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) )
9392simprd 463 . . . . . 6  |-  ( ph  ->  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) )
94 oveq1 6282 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  .x.  X )  =  ( j  .x.  X ) )
9594eqeq2d 2474 . . . . . . . . 9  |-  ( n  =  j  ->  (
z  =  ( n 
.x.  X )  <->  z  =  ( j  .x.  X
) ) )
9695cbvrexv 3082 . . . . . . . 8  |-  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  <->  E. j  e.  ZZ  z  =  ( j  .x.  X ) )
9727adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ -onto-> ( Base `  Y
) )
98 fof 5786 . . . . . . . . . . . . 13  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
9997, 98syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ --> ( Base `  Y
) )
10099ffvelrnda 6012 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( L `  j )  e.  ( Base `  Y
) )
10159adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( F `  ( L `  j ) )  =  ( j  .x.  X
) )
102101eqcomd 2468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )
103 fveq2 5857 . . . . . . . . . . . . 13  |-  ( a  =  ( L `  j )  ->  ( F `  a )  =  ( F `  ( L `  j ) ) )
104103eqeq2d 2474 . . . . . . . . . . . 12  |-  ( a  =  ( L `  j )  ->  (
( j  .x.  X
)  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  ( L `
 j ) ) ) )
105104rspcev 3207 . . . . . . . . . . 11  |-  ( ( ( L `  j
)  e.  ( Base `  Y )  /\  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
106100, 102, 105syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
107 eqeq1 2464 . . . . . . . . . . 11  |-  ( z  =  ( j  .x.  X )  ->  (
z  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  a ) ) )
108107rexbidv 2966 . . . . . . . . . 10  |-  ( z  =  ( j  .x.  X )  ->  ( E. a  e.  ( Base `  Y ) z  =  ( F `  a )  <->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) ) )
109106, 108syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
z  =  ( j 
.x.  X )  ->  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
110109rexlimdva 2948 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( E. j  e.  ZZ  z  =  ( j  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11196, 110syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
112111ralimdva 2865 . . . . . 6  |-  ( ph  ->  ( A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
11393, 112mpd 15 . . . . 5  |-  ( ph  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) )
114 dffo3 6027 . . . . 5  |-  ( F : ( Base `  Y
) -onto-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. z  e.  B  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11525, 113, 114sylanbrc 664 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -onto-> B )
116 df-f1o 5586 . . . 4  |-  ( F : ( Base `  Y
)
-1-1-onto-> B 
<->  ( F : (
Base `  Y ) -1-1->
B  /\  F :
( Base `  Y ) -onto-> B ) )
11789, 115, 116sylanbrc 664 . . 3  |-  ( ph  ->  F : ( Base `  Y ) -1-1-onto-> B )
1181, 2isgim 16098 . . 3  |-  ( F  e.  ( Y GrpIso  G
)  <->  ( F  e.  ( Y  GrpHom  G )  /\  F : (
Base `  Y ) -1-1-onto-> B
) )
11974, 117, 118sylanbrc 664 . 2  |-  ( ph  ->  F  e.  ( Y GrpIso  G ) )
120 brgici 16106 . 2  |-  ( F  e.  ( Y GrpIso  G
)  ->  Y  ~=ph𝑔  G )
121 gicsym 16110 . 2  |-  ( Y 
~=ph𝑔  G  ->  G  ~=ph𝑔 
Y )
122119, 120, 1213syl 20 1  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811   ifcif 3932   <.cop 4026   class class class wbr 4440    |-> cmpt 4498   ran crn 4993   -->wf 5575   -1-1->wf1 5576   -onto->wfo 5577   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275   Fincfn 7506   0cc0 9481    + caddc 9484   NN0cn0 10784   ZZcz 10853   #chash 12360   Basecbs 14479   +g cplusg 14544   Grpcgrp 15716  .gcmg 15720    GrpHom cghm 16052   GrpIso cgim 16093    ~=ph𝑔 cgic 16094  CycGrpccyg 16664   Ringcrg 16979   CRingccrg 16980   RingHom crh 17138  ℤringzring 18249   ZRHomczrh 18297  ℤ/nczn 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-omul 7125  df-er 7301  df-ec 7303  df-qs 7307  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-rp 11210  df-fz 11662  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-0g 14686  df-imas 14752  df-divs 14753  df-mnd 15721  df-mhm 15770  df-grp 15851  df-minusg 15852  df-sbg 15853  df-mulg 15854  df-subg 15986  df-nsg 15987  df-eqg 15988  df-ghm 16053  df-gim 16095  df-gic 16096  df-od 16342  df-cmn 16589  df-abl 16590  df-cyg 16665  df-mgp 16925  df-ur 16937  df-rng 16981  df-cring 16982  df-oppr 17049  df-dvdsr 17067  df-rnghom 17141  df-subrg 17203  df-lmod 17290  df-lss 17355  df-lsp 17394  df-sra 17594  df-rgmod 17595  df-lidl 17596  df-rsp 17597  df-2idl 17655  df-cnfld 18185  df-zring 18250  df-zrh 18301  df-zn 18304
This theorem is referenced by:  cygzn  18369
  Copyright terms: Public domain W3C validator