MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Unicode version

Theorem cygznlem3 18005
Description: A cyclic group with  n elements is isomorphic to  ZZ  /  n ZZ. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
cygzn.f  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
Assertion
Ref Expression
cygznlem3  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Distinct variable groups:    m, n, x, B    m, G, n, x    .x. , m, n, x   
m, Y, n, x   
m, L, n, x   
x, N    ph, m    n, F, x    m, X, n, x
Allowed substitution hints:    ph( x, n)    E( x, m, n)    F( m)    N( m, n)

Proof of Theorem cygznlem3
Dummy variables  a 
b  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
2 cygzn.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2443 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
4 eqid 2443 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
5 cygzn.n . . . . . 6  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
6 hashcl 12129 . . . . . . . 8  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
76adantl 466 . . . . . . 7  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
8 0nn0 10597 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
107, 9ifclda 3824 . . . . . 6  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
115, 10syl5eqel 2527 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
12 cygzn.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
1312zncrng 17980 . . . . 5  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
14 crngrng 16658 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
15 rnggrp 16653 . . . . 5  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
1611, 13, 14, 154syl 21 . . . 4  |-  ( ph  ->  Y  e.  Grp )
17 cygzn.g . . . . 5  |-  ( ph  ->  G  e. CycGrp )
18 cyggrp 16369 . . . . 5  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1917, 18syl 16 . . . 4  |-  ( ph  ->  G  e.  Grp )
20 cygzn.m . . . . 5  |-  .x.  =  (.g
`  G )
21 cygzn.l . . . . 5  |-  L  =  ( ZRHom `  Y
)
22 cygzn.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
23 cygzn.x . . . . 5  |-  ( ph  ->  X  e.  E )
24 cygzn.f . . . . 5  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 18003 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) --> B )
2612, 1, 21znzrhfo 17983 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
2711, 26syl 16 . . . . . . 7  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Y ) )
28 foelrn 5865 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  a  e.  ( Base `  Y ) )  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
2927, 28sylan 471 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
30 foelrn 5865 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3127, 30sylan 471 . . . . . 6  |-  ( (
ph  /\  b  e.  ( Base `  Y )
)  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3229, 31anim12dan 833 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
33 reeanv 2891 . . . . . . 7  |-  ( E. i  e.  ZZ  E. j  e.  ZZ  (
a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  <->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
3419adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  G  e.  Grp )
35 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
i  e.  ZZ )
36 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
j  e.  ZZ )
372, 20, 22iscyggen 16360 . . . . . . . . . . . . . 14  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3837simplbi 460 . . . . . . . . . . . . 13  |-  ( X  e.  E  ->  X  e.  B )
3923, 38syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
4039adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  X  e.  B )
412, 20, 4mulgdir 15655 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( i  e.  ZZ  /\  j  e.  ZZ  /\  X  e.  B )
)  ->  ( (
i  +  j ) 
.x.  X )  =  ( ( i  .x.  X ) ( +g  `  G ) ( j 
.x.  X ) ) )
4234, 35, 36, 40, 41syl13anc 1220 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( i  +  j )  .x.  X
)  =  ( ( i  .x.  X ) ( +g  `  G
) ( j  .x.  X ) ) )
4311, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Y  e.  CRing )
4421zrhrhm 17946 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
45 rhmghm 16818 . . . . . . . . . . . . . . 15  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  (ring  GrpHom  Y ) )
4643, 14, 44, 454syl 21 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  (ring  GrpHom  Y ) )
4746adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  L  e.  (ring  GrpHom  Y ) )
48 zringbas 17892 . . . . . . . . . . . . . 14  |-  ZZ  =  ( Base ` ring )
49 zringplusg 17893 . . . . . . . . . . . . . 14  |-  +  =  ( +g  ` ring )
5048, 49, 3ghmlin 15755 . . . . . . . . . . . . 13  |-  ( ( L  e.  (ring  GrpHom  Y )  /\  i  e.  ZZ  /\  j  e.  ZZ )  ->  ( L `  ( i  +  j ) )  =  ( ( L `  i
) ( +g  `  Y
) ( L `  j ) ) )
5147, 35, 36, 50syl3anc 1218 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( L `  (
i  +  j ) )  =  ( ( L `  i ) ( +g  `  Y
) ( L `  j ) ) )
5251fveq2d 5698 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( F `
 ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) ) )
53 zaddcl 10688 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  ( i  +  j )  e.  ZZ )
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18004 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  +  j )  e.  ZZ )  ->  ( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j )  .x.  X
) )
5553, 54sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j ) 
.x.  X ) )
5652, 55eqtr3d 2477 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( i  +  j )  .x.  X ) )
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18004 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ZZ )  ->  ( F `
 ( L `  i ) )  =  ( i  .x.  X
) )
5857adantrr 716 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  i )
)  =  ( i 
.x.  X ) )
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 18004 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ZZ )  ->  ( F `
 ( L `  j ) )  =  ( j  .x.  X
) )
6059adantrl 715 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  j )
)  =  ( j 
.x.  X ) )
6158, 60oveq12d 6112 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) )  =  ( ( i  .x.  X
) ( +g  `  G
) ( j  .x.  X ) ) )
6242, 56, 613eqtr4d 2485 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
63 oveq12 6103 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a ( +g  `  Y ) b )  =  ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) )
6463fveq2d 5698 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( F `  (
a ( +g  `  Y
) b ) )  =  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) ) )
65 fveq2 5694 . . . . . . . . . . 11  |-  ( a  =  ( L `  i )  ->  ( F `  a )  =  ( F `  ( L `  i ) ) )
66 fveq2 5694 . . . . . . . . . . 11  |-  ( b  =  ( L `  j )  ->  ( F `  b )  =  ( F `  ( L `  j ) ) )
6765, 66oveqan12d 6113 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
6864, 67eqeq12d 2457 . . . . . . . . 9  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) )  <->  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) )  =  ( ( F `  ( L `
 i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) ) ) )
6962, 68syl5ibrcom 222 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7069rexlimdvva 2851 . . . . . . 7  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7133, 70syl5bir 218 . . . . . 6  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7271imp 429 . . . . 5  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
7332, 72syldan 470 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
741, 2, 3, 4, 16, 19, 25, 73isghmd 15759 . . 3  |-  ( ph  ->  F  e.  ( Y 
GrpHom  G ) )
7558, 60eqeq12d 2457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( i  .x.  X )  =  ( j  .x.  X ) ) )
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 18002 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( L `  i )  =  ( L `  j )  <-> 
( i  .x.  X
)  =  ( j 
.x.  X ) ) )
7775, 76bitr4d 256 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( L `  i )  =  ( L `  j ) ) )
7877biimpd 207 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  -> 
( L `  i
)  =  ( L `
 j ) ) )
7965, 66eqeqan12d 2458 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( F `  ( L `  i )
)  =  ( F `
 ( L `  j ) ) ) )
80 eqeq12 2455 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a  =  b  <-> 
( L `  i
)  =  ( L `
 j ) ) )
8179, 80imbi12d 320 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b )  <->  ( ( F `  ( L `  i ) )  =  ( F `  ( L `  j )
)  ->  ( L `  i )  =  ( L `  j ) ) ) )
8278, 81syl5ibrcom 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8382rexlimdvva 2851 . . . . . . . . 9  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8433, 83syl5bir 218 . . . . . . . 8  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8584imp 429 . . . . . . 7  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) )
8632, 85syldan 470 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
8786ralrimivva 2811 . . . . 5  |-  ( ph  ->  A. a  e.  (
Base `  Y ) A. b  e.  ( Base `  Y ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
88 dff13 5974 . . . . 5  |-  ( F : ( Base `  Y
) -1-1-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. a  e.  ( Base `  Y
) A. b  e.  ( Base `  Y
) ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) ) )
8925, 87, 88sylanbrc 664 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -1-1-> B )
902, 20, 22iscyggen2 16361 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9119, 90syl 16 . . . . . . . 8  |-  ( ph  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9223, 91mpbid 210 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) )
9392simprd 463 . . . . . 6  |-  ( ph  ->  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) )
94 oveq1 6101 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  .x.  X )  =  ( j  .x.  X ) )
9594eqeq2d 2454 . . . . . . . . 9  |-  ( n  =  j  ->  (
z  =  ( n 
.x.  X )  <->  z  =  ( j  .x.  X
) ) )
9695cbvrexv 2951 . . . . . . . 8  |-  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  <->  E. j  e.  ZZ  z  =  ( j  .x.  X ) )
9727adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ -onto-> ( Base `  Y
) )
98 fof 5623 . . . . . . . . . . . . 13  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
9997, 98syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ --> ( Base `  Y
) )
10099ffvelrnda 5846 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( L `  j )  e.  ( Base `  Y
) )
10159adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( F `  ( L `  j ) )  =  ( j  .x.  X
) )
102101eqcomd 2448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )
103 fveq2 5694 . . . . . . . . . . . . 13  |-  ( a  =  ( L `  j )  ->  ( F `  a )  =  ( F `  ( L `  j ) ) )
104103eqeq2d 2454 . . . . . . . . . . . 12  |-  ( a  =  ( L `  j )  ->  (
( j  .x.  X
)  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  ( L `
 j ) ) ) )
105104rspcev 3076 . . . . . . . . . . 11  |-  ( ( ( L `  j
)  e.  ( Base `  Y )  /\  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
106100, 102, 105syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
107 eqeq1 2449 . . . . . . . . . . 11  |-  ( z  =  ( j  .x.  X )  ->  (
z  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  a ) ) )
108107rexbidv 2739 . . . . . . . . . 10  |-  ( z  =  ( j  .x.  X )  ->  ( E. a  e.  ( Base `  Y ) z  =  ( F `  a )  <->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) ) )
109106, 108syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
z  =  ( j 
.x.  X )  ->  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
110109rexlimdva 2844 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( E. j  e.  ZZ  z  =  ( j  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11196, 110syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
112111ralimdva 2797 . . . . . 6  |-  ( ph  ->  ( A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
11393, 112mpd 15 . . . . 5  |-  ( ph  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) )
114 dffo3 5861 . . . . 5  |-  ( F : ( Base `  Y
) -onto-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. z  e.  B  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11525, 113, 114sylanbrc 664 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -onto-> B )
116 df-f1o 5428 . . . 4  |-  ( F : ( Base `  Y
)
-1-1-onto-> B 
<->  ( F : (
Base `  Y ) -1-1->
B  /\  F :
( Base `  Y ) -onto-> B ) )
11789, 115, 116sylanbrc 664 . . 3  |-  ( ph  ->  F : ( Base `  Y ) -1-1-onto-> B )
1181, 2isgim 15793 . . 3  |-  ( F  e.  ( Y GrpIso  G
)  <->  ( F  e.  ( Y  GrpHom  G )  /\  F : (
Base `  Y ) -1-1-onto-> B
) )
11974, 117, 118sylanbrc 664 . 2  |-  ( ph  ->  F  e.  ( Y GrpIso  G ) )
120 brgici 15801 . 2  |-  ( F  e.  ( Y GrpIso  G
)  ->  Y  ~=ph𝑔  G )
121 gicsym 15805 . 2  |-  ( Y 
~=ph𝑔  G  ->  G  ~=ph𝑔 
Y )
122119, 120, 1213syl 20 1  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   {crab 2722   ifcif 3794   <.cop 3886   class class class wbr 4295    e. cmpt 4353   ran crn 4844   -->wf 5417   -1-1->wf1 5418   -onto->wfo 5419   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6094   Fincfn 7313   0cc0 9285    + caddc 9288   NN0cn0 10582   ZZcz 10649   #chash 12106   Basecbs 14177   +g cplusg 14241   Grpcgrp 15413  .gcmg 15417    GrpHom cghm 15747   GrpIso cgim 15788    ~=ph𝑔 cgic 15789  CycGrpccyg 16357   Ringcrg 16648   CRingccrg 16649   RingHom crh 16807  ℤringzring 17886   ZRHomczrh 17934  ℤ/nczn 17937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-tpos 6748  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-omul 6928  df-er 7104  df-ec 7106  df-qs 7110  df-map 7219  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-sup 7694  df-oi 7727  df-card 8112  df-acn 8115  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-rp 10995  df-fz 11441  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-dvds 13539  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-0g 14383  df-imas 14449  df-divs 14450  df-mnd 15418  df-mhm 15467  df-grp 15548  df-minusg 15549  df-sbg 15550  df-mulg 15551  df-subg 15681  df-nsg 15682  df-eqg 15683  df-ghm 15748  df-gim 15790  df-gic 15791  df-od 16035  df-cmn 16282  df-abl 16283  df-cyg 16358  df-mgp 16595  df-ur 16607  df-rng 16650  df-cring 16651  df-oppr 16718  df-dvdsr 16736  df-rnghom 16809  df-subrg 16866  df-lmod 16953  df-lss 17017  df-lsp 17056  df-sra 17256  df-rgmod 17257  df-lidl 17258  df-rsp 17259  df-2idl 17317  df-cnfld 17822  df-zring 17887  df-zrh 17938  df-zn 17941
This theorem is referenced by:  cygzn  18006
  Copyright terms: Public domain W3C validator