MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem3 Structured version   Unicode version

Theorem cygznlem3 17844
Description: A cyclic group with  n elements is isomorphic to  ZZ  /  n ZZ. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
cygzn.f  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
Assertion
Ref Expression
cygznlem3  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Distinct variable groups:    m, n, x, B    m, G, n, x    .x. , m, n, x   
m, Y, n, x   
m, L, n, x   
x, N    ph, m    n, F, x    m, X, n, x
Allowed substitution hints:    ph( x, n)    E( x, m, n)    F( m)    N( m, n)

Proof of Theorem cygznlem3
Dummy variables  a 
b  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2433 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
2 cygzn.b . . . 4  |-  B  =  ( Base `  G
)
3 eqid 2433 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
4 eqid 2433 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
5 cygzn.n . . . . . 6  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
6 hashcl 12110 . . . . . . . 8  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
76adantl 463 . . . . . . 7  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
8 0nn0 10582 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
107, 9ifclda 3809 . . . . . 6  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
115, 10syl5eqel 2517 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
12 cygzn.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
1312zncrng 17819 . . . . 5  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
14 crngrng 16591 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
15 rnggrp 16586 . . . . 5  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
1611, 13, 14, 154syl 21 . . . 4  |-  ( ph  ->  Y  e.  Grp )
17 cygzn.g . . . . 5  |-  ( ph  ->  G  e. CycGrp )
18 cyggrp 16346 . . . . 5  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1917, 18syl 16 . . . 4  |-  ( ph  ->  G  e.  Grp )
20 cygzn.m . . . . 5  |-  .x.  =  (.g
`  G )
21 cygzn.l . . . . 5  |-  L  =  ( ZRHom `  Y
)
22 cygzn.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
23 cygzn.x . . . . 5  |-  ( ph  ->  X  e.  E )
24 cygzn.f . . . . 5  |-  F  =  ran  ( m  e.  ZZ  |->  <. ( L `  m ) ,  ( m  .x.  X )
>. )
252, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2a 17842 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) --> B )
2612, 1, 21znzrhfo 17822 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
2711, 26syl 16 . . . . . . 7  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Y ) )
28 foelrn 5850 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  a  e.  ( Base `  Y ) )  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
2927, 28sylan 468 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  E. i  e.  ZZ  a  =  ( L `  i ) )
30 foelrn 5850 . . . . . . 7  |-  ( ( L : ZZ -onto-> ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3127, 30sylan 468 . . . . . 6  |-  ( (
ph  /\  b  e.  ( Base `  Y )
)  ->  E. j  e.  ZZ  b  =  ( L `  j ) )
3229, 31anim12dan 826 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
33 reeanv 2878 . . . . . . 7  |-  ( E. i  e.  ZZ  E. j  e.  ZZ  (
a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  <->  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )
3419adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  G  e.  Grp )
35 simprl 748 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
i  e.  ZZ )
36 simprr 749 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
j  e.  ZZ )
372, 20, 22iscyggen 16337 . . . . . . . . . . . . . 14  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3837simplbi 457 . . . . . . . . . . . . 13  |-  ( X  e.  E  ->  X  e.  B )
3923, 38syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
4039adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  X  e.  B )
412, 20, 4mulgdir 15632 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( i  e.  ZZ  /\  j  e.  ZZ  /\  X  e.  B )
)  ->  ( (
i  +  j ) 
.x.  X )  =  ( ( i  .x.  X ) ( +g  `  G ) ( j 
.x.  X ) ) )
4234, 35, 36, 40, 41syl13anc 1213 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( i  +  j )  .x.  X
)  =  ( ( i  .x.  X ) ( +g  `  G
) ( j  .x.  X ) ) )
4311, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Y  e.  CRing )
4421zrhrhm 17785 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
45 rhmghm 16747 . . . . . . . . . . . . . . 15  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  (ring  GrpHom  Y ) )
4643, 14, 44, 454syl 21 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  (ring  GrpHom  Y ) )
4746adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  ->  L  e.  (ring  GrpHom  Y ) )
48 zringbas 17731 . . . . . . . . . . . . . 14  |-  ZZ  =  ( Base ` ring )
49 zringplusg 17732 . . . . . . . . . . . . . 14  |-  +  =  ( +g  ` ring )
5048, 49, 3ghmlin 15732 . . . . . . . . . . . . 13  |-  ( ( L  e.  (ring  GrpHom  Y )  /\  i  e.  ZZ  /\  j  e.  ZZ )  ->  ( L `  ( i  +  j ) )  =  ( ( L `  i
) ( +g  `  Y
) ( L `  j ) ) )
5147, 35, 36, 50syl3anc 1211 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( L `  (
i  +  j ) )  =  ( ( L `  i ) ( +g  `  Y
) ( L `  j ) ) )
5251fveq2d 5683 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( F `
 ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) ) )
53 zaddcl 10673 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  ( i  +  j )  e.  ZZ )
542, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 17843 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  +  j )  e.  ZZ )  ->  ( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j )  .x.  X
) )
5553, 54sylan2 471 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  ( i  +  j ) ) )  =  ( ( i  +  j ) 
.x.  X ) )
5652, 55eqtr3d 2467 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( i  +  j )  .x.  X ) )
572, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 17843 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ZZ )  ->  ( F `
 ( L `  i ) )  =  ( i  .x.  X
) )
5857adantrr 709 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  i )
)  =  ( i 
.x.  X ) )
592, 5, 12, 20, 21, 22, 17, 23, 24cygznlem2 17843 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ZZ )  ->  ( F `
 ( L `  j ) )  =  ( j  .x.  X
) )
6059adantrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  ( L `  j )
)  =  ( j 
.x.  X ) )
6158, 60oveq12d 6098 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) )  =  ( ( i  .x.  X
) ( +g  `  G
) ( j  .x.  X ) ) )
6242, 56, 613eqtr4d 2475 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( F `  (
( L `  i
) ( +g  `  Y
) ( L `  j ) ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
63 oveq12 6089 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a ( +g  `  Y ) b )  =  ( ( L `
 i ) ( +g  `  Y ) ( L `  j
) ) )
6463fveq2d 5683 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( F `  (
a ( +g  `  Y
) b ) )  =  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) ) )
65 fveq2 5679 . . . . . . . . . . 11  |-  ( a  =  ( L `  i )  ->  ( F `  a )  =  ( F `  ( L `  i ) ) )
66 fveq2 5679 . . . . . . . . . . 11  |-  ( b  =  ( L `  j )  ->  ( F `  b )  =  ( F `  ( L `  j ) ) )
6765, 66oveqan12d 6099 . . . . . . . . . 10  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  =  ( ( F `
 ( L `  i ) ) ( +g  `  G ) ( F `  ( L `  j )
) ) )
6864, 67eqeq12d 2447 . . . . . . . . 9  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) )  <->  ( F `  ( ( L `  i ) ( +g  `  Y ) ( L `
 j ) ) )  =  ( ( F `  ( L `
 i ) ) ( +g  `  G
) ( F `  ( L `  j ) ) ) ) )
6962, 68syl5ibrcom 222 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7069rexlimdvva 2838 . . . . . . 7  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7133, 70syl5bir 218 . . . . . 6  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) ) )
7271imp 429 . . . . 5  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
7332, 72syldan 467 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
741, 2, 3, 4, 16, 19, 25, 73isghmd 15736 . . 3  |-  ( ph  ->  F  e.  ( Y 
GrpHom  G ) )
7558, 60eqeq12d 2447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( i  .x.  X )  =  ( j  .x.  X ) ) )
762, 5, 12, 20, 21, 22, 17, 23cygznlem1 17841 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( L `  i )  =  ( L `  j )  <-> 
( i  .x.  X
)  =  ( j 
.x.  X ) ) )
7775, 76bitr4d 256 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  <->  ( L `  i )  =  ( L `  j ) ) )
7877biimpd 207 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( F `  ( L `  i ) )  =  ( F `
 ( L `  j ) )  -> 
( L `  i
)  =  ( L `
 j ) ) )
7965, 66eqeqan12d 2448 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( F `  ( L `  i )
)  =  ( F `
 ( L `  j ) ) ) )
80 eqeq12 2445 . . . . . . . . . . . 12  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( a  =  b  <-> 
( L `  i
)  =  ( L `
 j ) ) )
8179, 80imbi12d 320 . . . . . . . . . . 11  |-  ( ( a  =  ( L `
 i )  /\  b  =  ( L `  j ) )  -> 
( ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b )  <->  ( ( F `  ( L `  i ) )  =  ( F `  ( L `  j )
)  ->  ( L `  i )  =  ( L `  j ) ) ) )
8278, 81syl5ibrcom 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8382rexlimdvva 2838 . . . . . . . . 9  |-  ( ph  ->  ( E. i  e.  ZZ  E. j  e.  ZZ  ( a  =  ( L `  i
)  /\  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8433, 83syl5bir 218 . . . . . . . 8  |-  ( ph  ->  ( ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
8584imp 429 . . . . . . 7  |-  ( (
ph  /\  ( E. i  e.  ZZ  a  =  ( L `  i )  /\  E. j  e.  ZZ  b  =  ( L `  j ) ) )  ->  ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) )
8632, 85syldan 467 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
8786ralrimivva 2798 . . . . 5  |-  ( ph  ->  A. a  e.  (
Base `  Y ) A. b  e.  ( Base `  Y ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) )
88 dff13 5958 . . . . 5  |-  ( F : ( Base `  Y
) -1-1-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. a  e.  ( Base `  Y
) A. b  e.  ( Base `  Y
) ( ( F `
 a )  =  ( F `  b
)  ->  a  =  b ) ) )
8925, 87, 88sylanbrc 657 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -1-1-> B )
902, 20, 22iscyggen2 16338 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9119, 90syl 16 . . . . . . . 8  |-  ( ph  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) ) )
9223, 91mpbid 210 . . . . . . 7  |-  ( ph  ->  ( X  e.  B  /\  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) ) )
9392simprd 460 . . . . . 6  |-  ( ph  ->  A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X ) )
94 oveq1 6087 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  .x.  X )  =  ( j  .x.  X ) )
9594eqeq2d 2444 . . . . . . . . 9  |-  ( n  =  j  ->  (
z  =  ( n 
.x.  X )  <->  z  =  ( j  .x.  X
) ) )
9695cbvrexv 2938 . . . . . . . 8  |-  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  <->  E. j  e.  ZZ  z  =  ( j  .x.  X ) )
9727adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ -onto-> ( Base `  Y
) )
98 fof 5608 . . . . . . . . . . . . 13  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
9997, 98syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  B )  ->  L : ZZ --> ( Base `  Y
) )
10099ffvelrnda 5831 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( L `  j )  e.  ( Base `  Y
) )
10159adantlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  ( F `  ( L `  j ) )  =  ( j  .x.  X
) )
102101eqcomd 2438 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )
103 fveq2 5679 . . . . . . . . . . . . 13  |-  ( a  =  ( L `  j )  ->  ( F `  a )  =  ( F `  ( L `  j ) ) )
104103eqeq2d 2444 . . . . . . . . . . . 12  |-  ( a  =  ( L `  j )  ->  (
( j  .x.  X
)  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  ( L `
 j ) ) ) )
105104rspcev 3062 . . . . . . . . . . 11  |-  ( ( ( L `  j
)  e.  ( Base `  Y )  /\  (
j  .x.  X )  =  ( F `  ( L `  j ) ) )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
106100, 102, 105syl2anc 654 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) )
107 eqeq1 2439 . . . . . . . . . . 11  |-  ( z  =  ( j  .x.  X )  ->  (
z  =  ( F `
 a )  <->  ( j  .x.  X )  =  ( F `  a ) ) )
108107rexbidv 2726 . . . . . . . . . 10  |-  ( z  =  ( j  .x.  X )  ->  ( E. a  e.  ( Base `  Y ) z  =  ( F `  a )  <->  E. a  e.  ( Base `  Y
) ( j  .x.  X )  =  ( F `  a ) ) )
109106, 108syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  B )  /\  j  e.  ZZ )  ->  (
z  =  ( j 
.x.  X )  ->  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
110109rexlimdva 2831 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( E. j  e.  ZZ  z  =  ( j  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11196, 110syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
112111ralimdva 2784 . . . . . 6  |-  ( ph  ->  ( A. z  e.  B  E. n  e.  ZZ  z  =  ( n  .x.  X )  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) ) )
11393, 112mpd 15 . . . . 5  |-  ( ph  ->  A. z  e.  B  E. a  e.  ( Base `  Y ) z  =  ( F `  a ) )
114 dffo3 5846 . . . . 5  |-  ( F : ( Base `  Y
) -onto-> B  <->  ( F :
( Base `  Y ) --> B  /\  A. z  e.  B  E. a  e.  ( Base `  Y
) z  =  ( F `  a ) ) )
11525, 113, 114sylanbrc 657 . . . 4  |-  ( ph  ->  F : ( Base `  Y ) -onto-> B )
116 df-f1o 5413 . . . 4  |-  ( F : ( Base `  Y
)
-1-1-onto-> B 
<->  ( F : (
Base `  Y ) -1-1->
B  /\  F :
( Base `  Y ) -onto-> B ) )
11789, 115, 116sylanbrc 657 . . 3  |-  ( ph  ->  F : ( Base `  Y ) -1-1-onto-> B )
1181, 2isgim 15770 . . 3  |-  ( F  e.  ( Y GrpIso  G
)  <->  ( F  e.  ( Y  GrpHom  G )  /\  F : (
Base `  Y ) -1-1-onto-> B
) )
11974, 117, 118sylanbrc 657 . 2  |-  ( ph  ->  F  e.  ( Y GrpIso  G ) )
120 brgici 15778 . 2  |-  ( F  e.  ( Y GrpIso  G
)  ->  Y  ~=ph𝑔  G )
121 gicsym 15782 . 2  |-  ( Y 
~=ph𝑔  G  ->  G  ~=ph𝑔 
Y )
122119, 120, 1213syl 20 1  |-  ( ph  ->  G  ~=ph𝑔 
Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   {crab 2709   ifcif 3779   <.cop 3871   class class class wbr 4280    e. cmpt 4338   ran crn 4828   -->wf 5402   -1-1->wf1 5403   -onto->wfo 5404   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080   Fincfn 7298   0cc0 9270    + caddc 9273   NN0cn0 10567   ZZcz 10634   #chash 12087   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393  .gcmg 15397    GrpHom cghm 15724   GrpIso cgim 15765    ~=ph𝑔 cgic 15766  CycGrpccyg 16334   Ringcrg 16577   CRingccrg 16578   RingHom crh 16738  ℤringzring 17725   ZRHomczrh 17773  ℤ/nczn 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-rp 10980  df-fz 11425  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-dvds 13519  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-0g 14363  df-imas 14429  df-divs 14430  df-mnd 15398  df-mhm 15447  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-nsg 15659  df-eqg 15660  df-ghm 15725  df-gim 15767  df-gic 15768  df-od 16012  df-cmn 16259  df-abl 16260  df-cyg 16335  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-rnghom 16740  df-subrg 16787  df-lmod 16874  df-lss 16936  df-lsp 16975  df-sra 17175  df-rgmod 17176  df-lidl 17177  df-rsp 17178  df-2idl 17236  df-cnfld 17663  df-zring 17726  df-zrh 17777  df-zn 17780
This theorem is referenced by:  cygzn  17845
  Copyright terms: Public domain W3C validator