Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen2 Structured version   Visualization version   GIF version

Theorem iscyggen2 18106
 Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyggen2 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑦,𝐸   𝑛,𝑋,𝑥,𝑦   𝑛,𝐺,𝑥,𝑦   · ,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyggen2
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
3 iscyg3.e . . 3 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen 18105 . 2 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
51, 2mulgcl 17382 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
653expa 1257 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
76an32s 842 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵)
8 eqid 2610 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))
97, 8fmptd 6292 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵)
10 frn 5966 . . . . 5 ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵)
11 eqss 3583 . . . . . 6 (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
1211baib 942 . . . . 5 (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
139, 10, 123syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
14 dfss3 3558 . . . . 5 (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
15 ovex 6577 . . . . . . 7 (𝑛 · 𝑋) ∈ V
168, 15elrnmpti 5297 . . . . . 6 (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
1716ralbii 2963 . . . . 5 (∀𝑦𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
1814, 17bitri 263 . . . 4 (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ↔ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
1913, 18syl6bb 275 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))
2019pm5.32da 671 . 2 (𝐺 ∈ Grp → ((𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
214, 20syl5bb 271 1 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540   ↦ cmpt 4643  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℤcz 11254  Basecbs 15695  Grpcgrp 17245  .gcmg 17363 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364 This theorem is referenced by:  cyggeninv  18108  iscygd  18112  cygznlem3  19737
 Copyright terms: Public domain W3C validator