Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2elfz2melfz Structured version   Visualization version   GIF version

Theorem 2elfz2melfz 40355
Description: If the sum of two integers of a 0 based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0 based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
2elfz2melfz ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))

Proof of Theorem 2elfz2melfz
StepHypRef Expression
1 elfzelz 12213 . . . . 5 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℤ)
2 elfzel2 12211 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 12213 . . . . . 6 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℤ)
4 simplr 788 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℤ)
5 zsubcl 11296 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
65adantlr 747 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
74, 6zsubcld 11363 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
87adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℤ)
9 zre 11258 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109ad2antrr 758 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zaddcl 11294 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1211zred 11358 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1312expcom 450 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1413adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝐴 + 𝐵) ∈ ℝ))
1514imp 444 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
1610, 15, 10ltsub1d 10515 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) ↔ (𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁)))
17 zre 11258 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
189, 17anim12i 588 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ))
19 zre 11258 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2018, 19anim12i 588 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ))
21 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
2221, 21resubcld 10337 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (𝑁𝑁) ∈ ℝ)
2322ad2antrr 758 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑁𝑁) ∈ ℝ)
24 readdcl 9898 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2524expcom 450 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ))
2726imp 444 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
28 simpll 786 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ)
2927, 28resubcld 10337 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) − 𝑁) ∈ ℝ)
3023, 29jca 553 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ))
31 ltle 10005 . . . . . . . . . . . 12 (((𝑁𝑁) ∈ ℝ ∧ ((𝐴 + 𝐵) − 𝑁) ∈ ℝ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
3220, 30, 313syl 18 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → (𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁)))
33 zcn 11259 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433subidd 10259 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁𝑁) = 0)
3534ad2antrr 758 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁𝑁) = 0)
36 zcn 11259 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3736adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐵 ∈ ℂ)
3933ad2antrr 758 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℂ)
40 zcn 11259 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
42 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
43 simp1 1054 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
4442, 43addcomd 10117 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4544oveq1d 6564 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = ((𝐵 + 𝐴) − 𝑁))
46 subsub3 10192 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − (𝑁𝐴)) = ((𝐵 + 𝐴) − 𝑁))
4745, 46eqtr4d 2647 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4838, 39, 41, 47syl3anc 1318 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 𝐵) − 𝑁) = (𝐵 − (𝑁𝐴)))
4935, 48breq12d 4596 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) ≤ ((𝐴 + 𝐵) − 𝑁) ↔ 0 ≤ (𝐵 − (𝑁𝐴))))
5032, 49sylibd 228 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → ((𝑁𝑁) < ((𝐴 + 𝐵) − 𝑁) → 0 ≤ (𝐵 − (𝑁𝐴))))
5116, 50sylbid 229 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) → (𝑁 < (𝐴 + 𝐵) → 0 ≤ (𝐵 − (𝑁𝐴))))
5251imp 444 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 − (𝑁𝐴)))
53 elnn0z 11267 . . . . . . . 8 ((𝐵 − (𝑁𝐴)) ∈ ℕ0 ↔ ((𝐵 − (𝑁𝐴)) ∈ ℤ ∧ 0 ≤ (𝐵 − (𝑁𝐴))))
548, 52, 53sylanbrc 695 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ∈ ℤ) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
5554exp31 628 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
562, 3, 55syl2anc 691 . . . . 5 (𝐵 ∈ (0...𝑁) → (𝐴 ∈ ℤ → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)))
571, 56mpan9 485 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ ℕ0))
5857imp 444 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ ℕ0)
59 elfznn0 12302 . . . 4 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℕ0)
6059ad2antrr 758 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → 𝐴 ∈ ℕ0)
61 elfzle2 12216 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵𝑁)
6261adantl 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵𝑁)
63 elfzel2 12211 . . . . . . . . . 10 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
6463zcnd 11359 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
651zcnd 11359 . . . . . . . . 9 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℂ)
6664, 65jca 553 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
6766adantr 480 . . . . . . 7 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ))
68 npcan 10169 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑁𝐴) + 𝐴) = 𝑁)
6967, 68syl 17 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝑁𝐴) + 𝐴) = 𝑁)
7062, 69breqtrrd 4611 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ≤ ((𝑁𝐴) + 𝐴))
713zred 11358 . . . . . . 7 (𝐵 ∈ (0...𝑁) → 𝐵 ∈ ℝ)
7271adantl 481 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐵 ∈ ℝ)
7363zred 11358 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
741zred 11358 . . . . . . . 8 (𝐴 ∈ (0...𝑁) → 𝐴 ∈ ℝ)
7573, 74resubcld 10337 . . . . . . 7 (𝐴 ∈ (0...𝑁) → (𝑁𝐴) ∈ ℝ)
7675adantr 480 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁𝐴) ∈ ℝ)
7774adantr 480 . . . . . 6 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → 𝐴 ∈ ℝ)
7872, 76, 77lesubadd2d 10505 . . . . 5 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → ((𝐵 − (𝑁𝐴)) ≤ 𝐴𝐵 ≤ ((𝑁𝐴) + 𝐴)))
7970, 78mpbird 246 . . . 4 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
8079adantr 480 . . 3 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ≤ 𝐴)
81 elfz2nn0 12300 . . 3 ((𝐵 − (𝑁𝐴)) ∈ (0...𝐴) ↔ ((𝐵 − (𝑁𝐴)) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 − (𝑁𝐴)) ≤ 𝐴))
8258, 60, 80, 81syl3anbrc 1239 . 2 (((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) ∧ 𝑁 < (𝐴 + 𝐵)) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴))
8382ex 449 1 ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁𝐴)) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954  cmin 10145  0cn0 11169  cz 11254  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator