Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gboage9 Structured version   Visualization version   GIF version

Theorem gboage9 40186
Description: Any odd Goldbach number (strong version) is greater than or equal to 9. Because of 9gboa 40196, this bound is strict. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gboage9 (𝑍 ∈ GoldbachOddALTV → 9 ≤ 𝑍)

Proof of Theorem gboage9
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgboa 40175 . 2 (𝑍 ∈ GoldbachOddALTV ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))))
2 df-3an 1033 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
3 an6 1400 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) ↔ ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )))
4 oddprmuzge3 40163 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
5 oddprmuzge3 40163 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
6 oddprmuzge3 40163 . . . . . . . . . . 11 ((𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd ) → 𝑟 ∈ (ℤ‘3))
7 6p3e9 11047 . . . . . . . . . . . 12 (6 + 3) = 9
8 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℤ)
9 eluzelz 11573 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℤ)
10 zaddcl 11294 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
118, 9, 10syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℤ)
1211zred 11358 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 + 𝑞) ∈ ℝ)
13 eluzelre 11574 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (ℤ‘3) → 𝑟 ∈ ℝ)
1412, 13anim12i 588 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
15143impa 1251 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
16 6re 10978 . . . . . . . . . . . . . . 15 6 ∈ ℝ
17 3re 10971 . . . . . . . . . . . . . . 15 3 ∈ ℝ
1816, 17pm3.2i 470 . . . . . . . . . . . . . 14 (6 ∈ ℝ ∧ 3 ∈ ℝ)
1915, 18jctil 558 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → ((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
20 3p3e6 11038 . . . . . . . . . . . . . . . 16 (3 + 3) = 6
21 eluzelre 11574 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℤ‘3) → 𝑝 ∈ ℝ)
22 eluzelre 11574 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (ℤ‘3) → 𝑞 ∈ ℝ)
2321, 22anim12i 588 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
2417, 17pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ ∧ 3 ∈ ℝ)
2523, 24jctil 558 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → ((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
26 eluzle 11576 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘3) → 3 ≤ 𝑝)
27 eluzle 11576 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℤ‘3) → 3 ≤ 𝑞)
2826, 27anim12i 588 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 ≤ 𝑝 ∧ 3 ≤ 𝑞))
29 le2add 10389 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
3025, 28, 29sylc 63 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → (3 + 3) ≤ (𝑝 + 𝑞))
3120, 30syl5eqbrr 4619 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
32313adant3 1074 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 6 ≤ (𝑝 + 𝑞))
33 eluzle 11576 . . . . . . . . . . . . . . 15 (𝑟 ∈ (ℤ‘3) → 3 ≤ 𝑟)
34333ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 3 ≤ 𝑟)
3532, 34jca 553 . . . . . . . . . . . . 13 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟))
36 le2add 10389 . . . . . . . . . . . . 13 (((6 ∈ ℝ ∧ 3 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((6 ≤ (𝑝 + 𝑞) ∧ 3 ≤ 𝑟) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟)))
3719, 35, 36sylc 63 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → (6 + 3) ≤ ((𝑝 + 𝑞) + 𝑟))
387, 37syl5eqbrr 4619 . . . . . . . . . . 11 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3) ∧ 𝑟 ∈ (ℤ‘3)) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
394, 5, 6, 38syl3an 1360 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) ∧ (𝑟 ∈ ℙ ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
403, 39sylbi 206 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
412, 40sylanbr 489 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → 9 ≤ ((𝑝 + 𝑞) + 𝑟))
42 breq2 4587 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (9 ≤ 𝑍 ↔ 9 ≤ ((𝑝 + 𝑞) + 𝑟)))
4341, 42syl5ibrcom 236 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 9 ≤ 𝑍))
4443expimpd 627 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4544rexlimdva 3013 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4645a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍)))
4746rexlimdvv 3019 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 9 ≤ 𝑍))
4847imp 444 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) → 9 ≤ 𝑍)
491, 48sylbi 206 1 (𝑍 ∈ GoldbachOddALTV → 9 ≤ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   + caddc 9818  cle 9954  3c3 10948  6c6 10951  9c9 10954  cz 11254  cuz 11563  cprime 15223   Odd codd 40076   GoldbachOddALTV cgboa 40169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-even 40077  df-odd 40078  df-gboa 40172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator